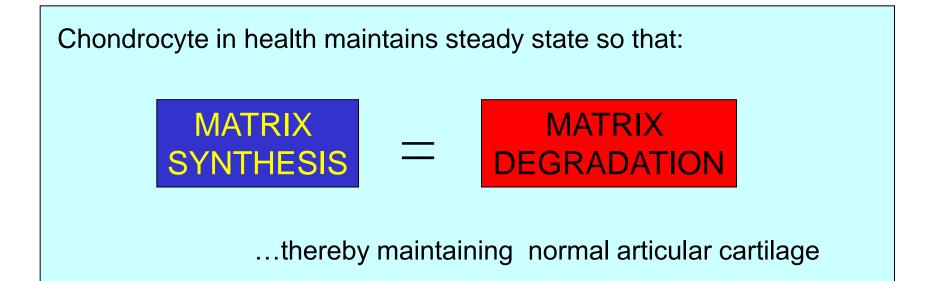
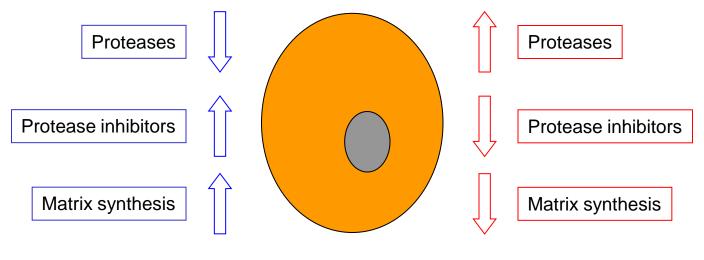
Articular pathology and Connective tissue turnover

Matthew Pickering Consultant Rheumatologist matthew.pickering@imperial.ac.uk

Overview

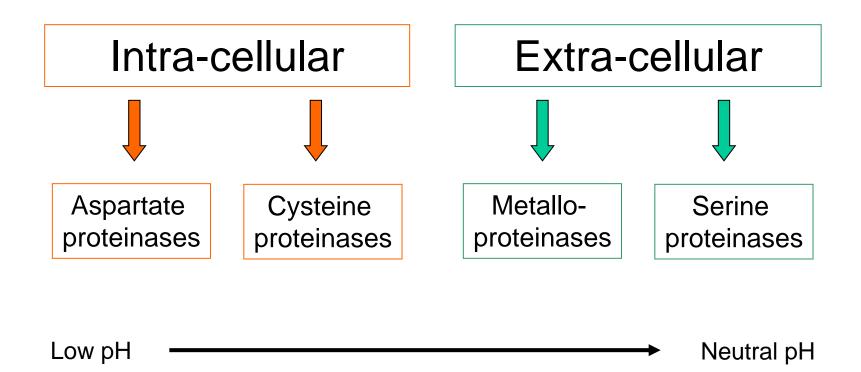

 Connective tissue turnover and matrix proteinases

- Articular pathology
 - Rheumatoid arthritis
 - Osteoarthritis


Learning objectives

- Define what is meant by matrix metalloproteinase and give some examples of their substrates
- Define what is meant by ADAMTS protease and understand that aggrecanases are important in the turnover of proteoglycan in articular cartilage
- Understand that cathepsin K is important protease in bone matrix turnover
- Define two abnormalities seen in the synovium of patients with rheumatoid arthritis
- Understand the importance of the inflammatory cytokine, tumour necrosis factor- α (TNF- α) in rheumatoid arthritis pathology.
- Define two abnormalities seen in the cartilage and two abnormalities seen in the bone in the osteoarthritic joint.

 Cartilage and bone destruction develops when there is an imbalance between matrix synthesis and matrix degradation


 Cartilage and bone destruction is mediated by proteinases that degrade collagen and proteoglycan

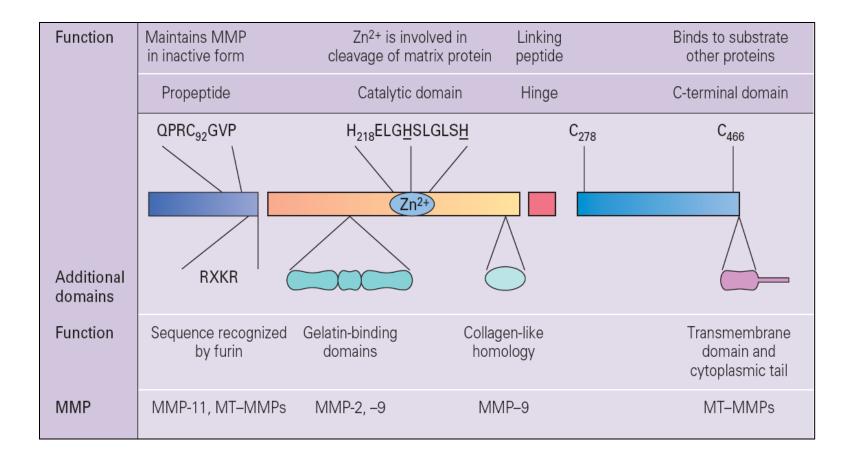
Connective tissue cell

- Source of proteinases depends on pathological process
 - Osteoarthritis = chondrocyte
 - Rheumatoid arthritis = synovial cells, inflammatory cells (extrinsic), chondrocytes
 - Infection = inflammatory cells (extrinsic), bacterial proteases (exogenous)

Proteins that degrade connective tissue matrix

Proteinases that degrade connective tissue matrix

Proteinase	Class	Inhibitors	Substrates		
Collagenases MMP-1, -8, -13	Metallo	TIMPs, α ₂ -m	Fibrillar collagen I, II, III, VII, X gelatins		
Stromelysins MMP-3, -10, -11	Metallo	TIMPs, α ₂ -m	Broad spectrum of activity, e.g. proteoglycan, fibronectin, laminin, some gelatins and collagens, link protein, vitronectin, etc.		
Gelatinases MMP-2, -9	Metallo	TIMPs, α ₂ -m	Denatured collagens, collagens IV, V, VII, X, elastin, fibronectin, vitronectin		
Cathepsin B	Cysteine	Cystatins, α_2 -m	Proteoglycan, link protein, procollagen II, collagen II		
Cathepsin L	Cysteine	Cystatins, α_2 -m	Proteoglycan, elastin, link protein, collagen II		
Cathepsin S	Cysteine	Cystatins, α_2 -m	Proteoglycan, link protein, procollagen II, collagen II		
Cathepsin H	Cysteine	Cystatins, α_2 -m	Proteoglycan		
Cathepsin D	Aspartate	α ₂ -m	Proteoglycan, gelatin		
Plasmin	Serine	α_1 -PI, α_1 -AC, α_2 -m, α_2 antiplasmin	Activates MMPs		
Plasminogen activator (tissue)	Serine	Protease nexin 1, PA1-1, α ₂ -m	Activates plasminogen		
Plasminogen activator (urokinase)	Serine	Protease nexin 1, PA1-1, α ₂ -m	Activates plasminogen		
(urokinase) $MMP = Matrix metalloproteinase; TIMP = Tissue inhibitors of metalloproteinase; \alpha_2-m = \alpha_2-macroglobulin; \alpha_1-PI = \alpha_1-antiproteinase inhibitor; \alpha_1-AC = \alpha_1- antichymotrypsin; PAI-1 = Plasminogen activator-1.$					


- Important proteinases in connective tissue turnover
 - Matrix metalloproteinases (MMPs)
 - collagenases
 - ADAMTS -4 and -5
 - aggrecanases
 - Cathepsin K
 - bone matrix

Matrix metalloproteinases - 1

• Family of proteins

- Catalytic centre contains zinc
- Calcium-dependent endopeptidases

Domain structure of the matrix metalloproteinases (MMPs)

Matrix metalloproteinases - 2

- Family of proteins
 - Catalytic centre contains zinc hence 'metallo'
 - Calcium-dependent endopeptidases
- <u>Responsible for</u>
 - Tissue remodelling
 - Degradation of extracellular matrix (ECM)

Role of MMPs in physiology and disease

RP Verma and C. Hansch. Matrix metalloproteinases. Bioorg. Med. Chem. 2007, 15:2223-2268.

Physiological processes	Pathological	processes
Angiogenesis	Arthritis	Multiple sclerosis
Apoptosis	Alzheimer's disease	Nephritis
Blastocyst	Atherosclerosis	Neurological
implantation		disease
Bone remodeling	Breakdown of	Osteoarthritis
-	blood-brain barrier	(OA)
Cervical dilation	Cancer	Periodontal
		disease
Embryonic	Cardiovascular	Rheumatoid
development	disease	
Endometrial cycling	Central nervous system disorders	Skin ulceration
Hair follicle cycling	Corneal ulceration	Sorby's fundus disease
Immune response	Emphysema	Vascular disease
Inflammation	Fibrotic lung disease	
Nerve growth	Gastric ulcer	
Organ morphogenesis	Guillian-Barre disease	
Ovulation	Liver cirrhosis	
Postpartum uterine	Liver fibrosis	
involution		
Wound healing	Metastasis	

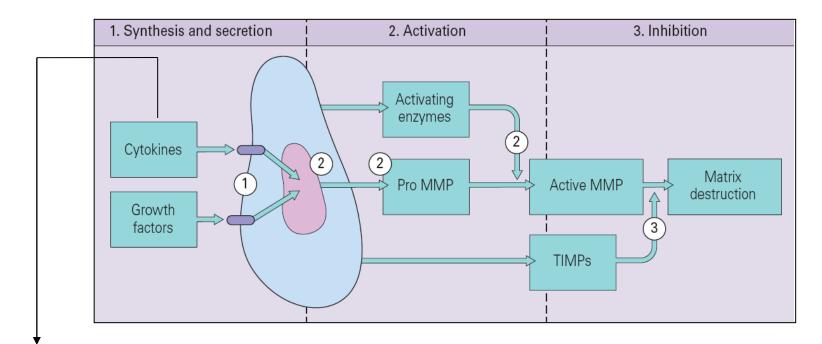
Matrix metalloproteinases - 3

- Family of proteins
 - Catalytic centre contains zinc
 - Calcium-dependent endopeptidases
- Responsible for
 - Tissue remodelling
 - Degradation of extracellular matrix (ECM)
- Substrates are ECM components:
 - Collagen
 - Elastin
 - Gelatin (hydrolysed collagen)
 - Proteoglycans
 - Matrix glycoproteins

MMP classes

RP Verma and C. Hansch. Matrix metalloproteinases.
Bioorg. Med. Chem. 2007, 15:2223-2268.

No. MMP No. Class Enzyme	
1 MMP-1 Collagenases Collagenase-1	
2 MMP-8 Neutrophil collagenase	
3 MMP-13 Collagenase-3	
4 MMP-18 Collagenase-4	
5 MMP-2 Gelatinases Gelatinase-A	
6 MMP-9 Gelatinases-B	
7 MMP-3 Stromelysins Stromelysin-1	
8 MMP-10 Stromelysin-2	
9 MMP-11 Stromelysin-3	
10 MMP-27 Homology to	
stromelysin-2 (51.6%)	
11 MMP-7 Matrilysins Matrilysin (PUMP)	
12 MMP-26 Matrilysin-2	
13 MMP-14 MT-MMP MT1-MMP	
(membrane type)	
14 MMP-15 MT2-MMP	
15 MMP-16 MT3-MMP	
16 MMP-17 MT4-MMP	
17 MMP-24 MT5-MMP	
18 MMP-25 MT6-MMP	
19 MMP-12 Other enzymes Macrophage metalloelastas	se
20 MMP-19 RASI 1	
21 MMP-20 Enamelysin	
22 MMP-21 MMP identified on	
chromosome 1	
23 MMP-22 MMP identified on	
chromosome 1	
24 MMP-23 From human ovary cDNA	L
25 MMP-28 Epilysin	
26 MMP-29 Unnamed	


Examples of MMPs

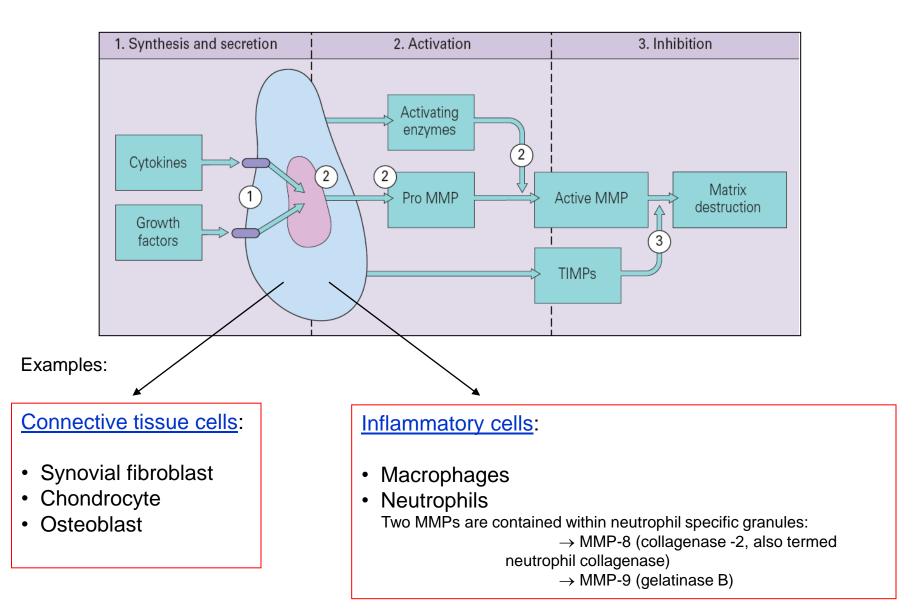
- STROMELYSINS
 - Proteoglycans, Matrix glycoproteins (e.g. fibronectin, laminin)
 - Degraded collagen
- COLLAGENASES
 - Collagen
 - MMP-1, -8, -13 (= collagenase -1, -2, -3) cleave fibrillar collagen at a single site → stromelysins and gelatinases degrade the collagen fragments
- GELATINASES
 - Type IV collagen (basement membrane)
 - Elastin
 - Degraded collagen

Matrix metalloproteinases - 4

 <u>Regulated by hormones, growth factors and</u> cytokines

Regulation of MMPs

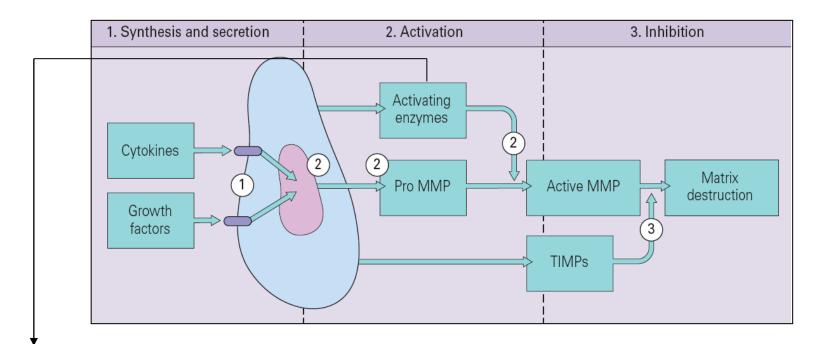
examples:


• In general the pro-inflammatory cytokines stimulate MMP synthesis and secretion e.g.

 \rightarrow interleukin-1 and TNF- α stimulate collagenases1

Matrix metalloproteinases - 5

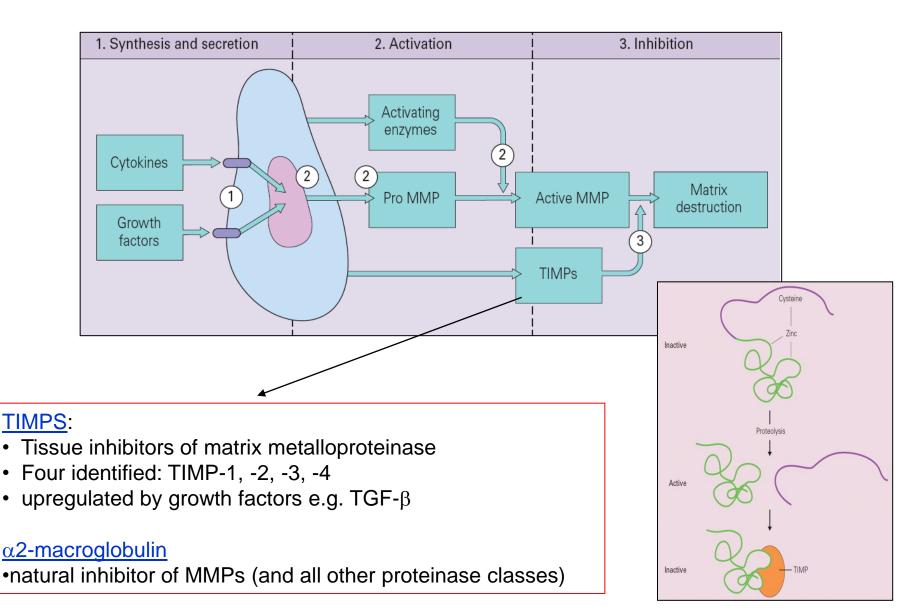
- Regulated by hormones, growth factors and cytokines
- Synthesised by many cell types


Source of MMPs

Matrix metalloproteinases - 6

- Regulated by hormones, growth factors and cytokines
- Synthesised by many cell types
- <u>Synthesised in zymogen form</u>

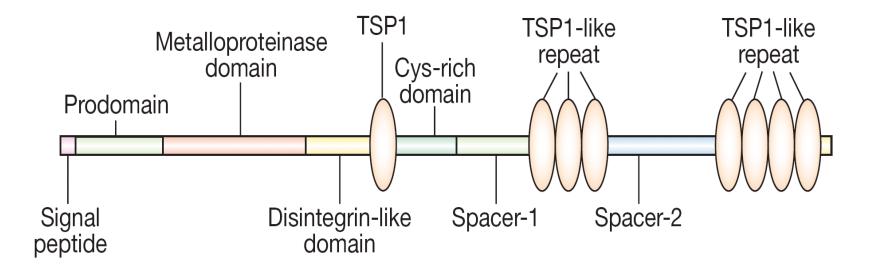
Activation of MMPs


examples:

- FURIN ubiquitous golgi proteinase
- Plasmin (protease produced from plasma zymogen plasminogen) activates pro-MMP-3
- Stromelysin-1 (MMP-3) activates pro-collagenases
- MMP14 (an MT-MMP) may initiate MMP activation cascades
- MMP-17 (MT4-MMP) activates ADAMTS-4

Matrix metalloproteinases - 7

- Regulated by hormones, growth factors and cytokines
- Synthesised by many cell types
- Synthesised in zymogen form
- Inhibition of MMPs


Inhibition of MMPs

- Important proteinases in connective tissue turnover
 - Matrix metalloproteinases (MMPs)
 - collagenases
 - ADAMTS -4 and -5
 - aggrecanases
 - Cathepsin K

ADAMTS family of proteinases

- Related to MMPs i.e. are metalloproteinases
- ADAMTS = a disintegrin and metalloproteinase with thrombospondin motifs

• ADAMTS family of proteinases

 Diverse functions but important to note that <u>ADAMTS-4 and</u> <u>5 are aggrecanases i.e. degrade cartilage proteoglycan</u>

NAME:

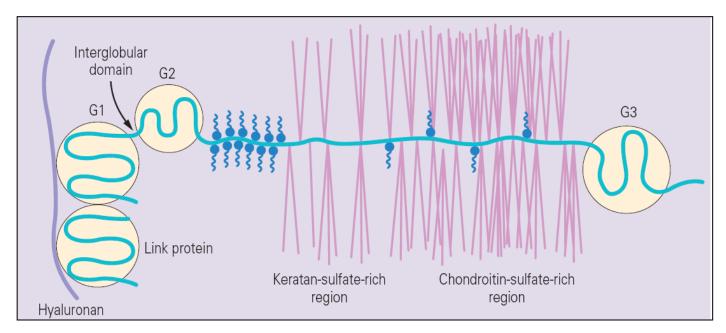
SUBSTRATE:

INHIBITORS:

ADAMTS-4 (aggrecanase-1)

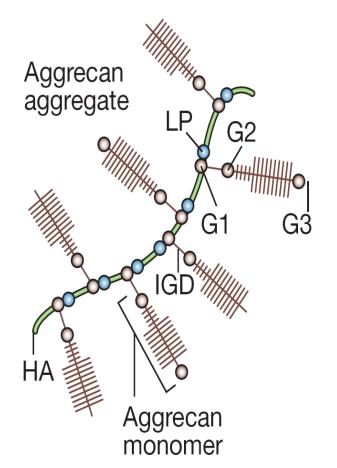
Aggrecan

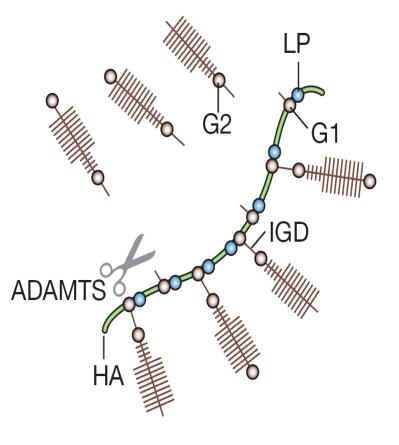
TIMP-1, -2, -3 α2-macroglobulin


ADAMTS-5 (aggrecanase-2)

Aggrecan

TIMP-3


 α 2-macroglobulin


The major proteoglycan in human cartilage is aggrecan

Link protein enables non-covalent interaction between aggrecan and hyaluronic acid

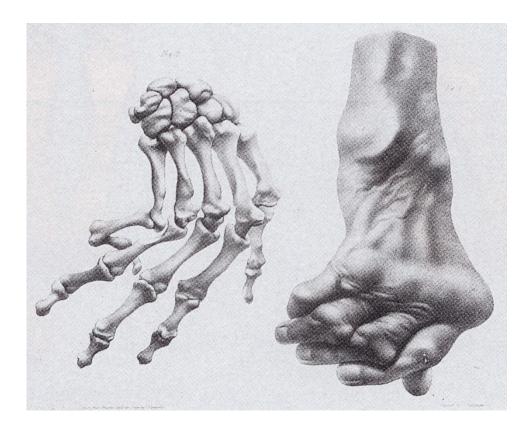
ADAMTS-mediated cleavage of aggrecan

- Important proteinases in connective tissue turnover
 - Matrix metalloproteinases (MMPs)
 - collagenases
 - ADAMTS -4 and -5
 - aggrecanases
 - Cathepsin K

Cathepsin K

- Cysteine protease most active at acidic pH
 lacunae of the osteoclast is acidic
- Important in turnover of matrix of long bone
 - Highly expressed by osteoclast
 - Active against helical type I collagen
 - Cathepsin K-deficient osteoclasts cannot degrade bone protein matrix
 - Human deficiency results in skeletal dysplasia (Pycnodysostosis)
 - Inhibition of cathepsin K under investigation as potential therapy for conditions associated with excessive bone turnover

Connective tissue turnover summary


- Most of joint tissue is extra-cellular matrix and proteinases are key in ECM degradation
- Proteases are numerous and combine to form complex regulatory networks
- Important roles for:
 - MMP collagenases and cleavage of cartilage collagens
 - ADAMTS aggrecanases and cartilage proteoglycans
 - Cathepsin K in the acidic lacunae of osteoclasts and bone matrix turnover

Articular pathology

- Rheumatoid arthritis
- Osteoarthritis

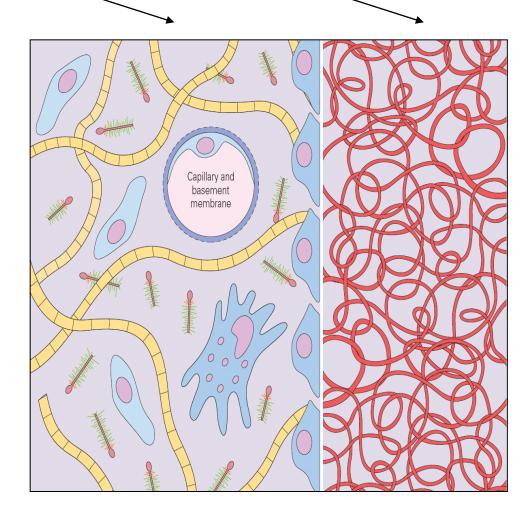
Rheumatoid arthritis

Chronic autoimmune disease characterised by pain, stiffness and symmetrical synovitis (inflammation of the synovial membrane) of diarthrodial joints

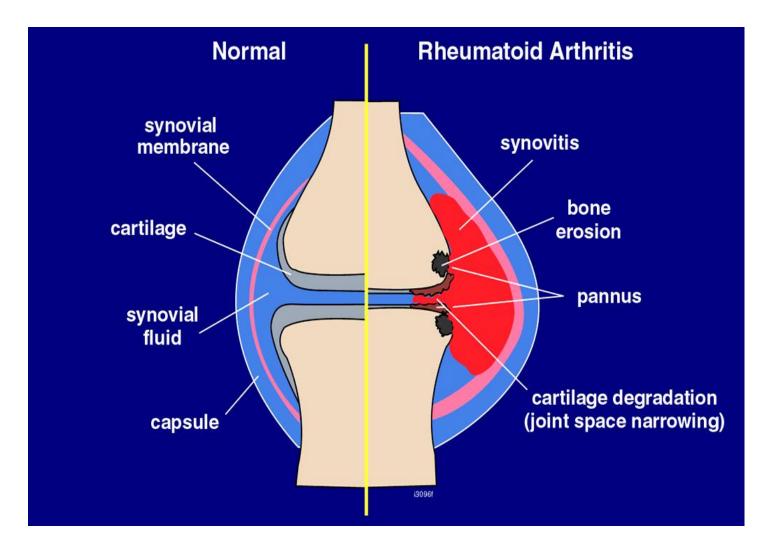
Synovium and synovial fluid

Synovium:

Lining, 1-3 cells deep


Type A synoviocytes: macrophage-like phagocytic

Type B synoviocytes: fibroblast-like produce hyaluronate

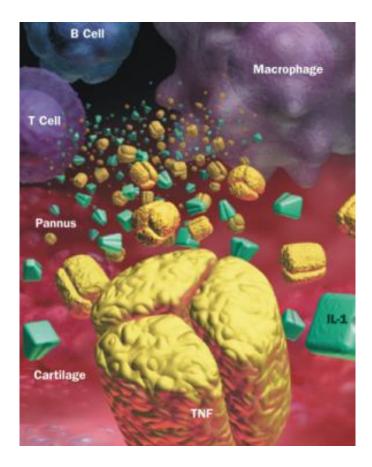

Collagen is type I

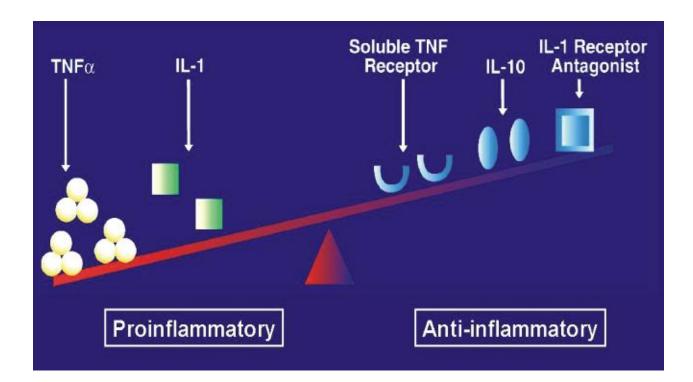
Synovial fluid:

Hyaluronate-rich viscous fluid

Rheumatoid arthritis - pathology

Synovial membrane in rheumatoid arthritis:


Proliferated mass of tissue (pannus)

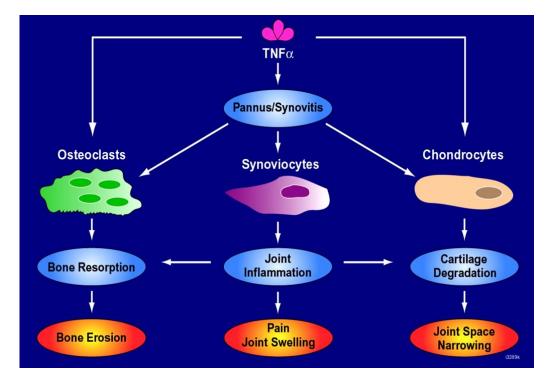

- neovascularisation
- Iymphangiogenesis

Contains inflammatory cells:

- activated B and T cells
- plasma cells
- mast cells
- activated macrophages

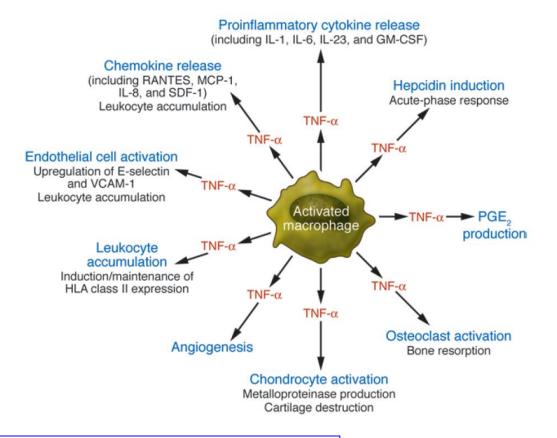
Recruitment, activation and effector functions of these cells controlled by cytokine network

Cytokine imbalance in rheumatoid arthritis

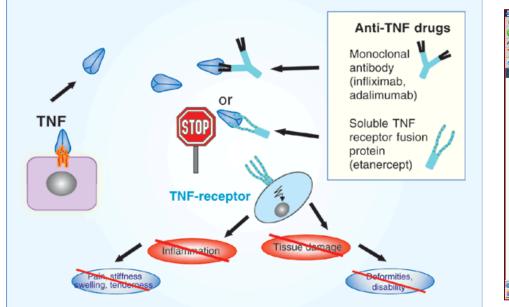

<u>The cytokine TNF- α is the dominant pro-inflammatory cytokine in</u> <u>the rheumatoid joint:</u>

Tumour necrosis factor- α

Identified in 1975 as serum factor isolated from mice treated with endotoxin that induced necrosis in murine sarcoma


Studies in rheumatoid synovial cultures showed that TNF- α was dominant cytokine i.e. inhibition of TNF- α resulted in blockage of production of interleukin-1, interleukin-6, the chemokine interleukin-8 and GM-CSF

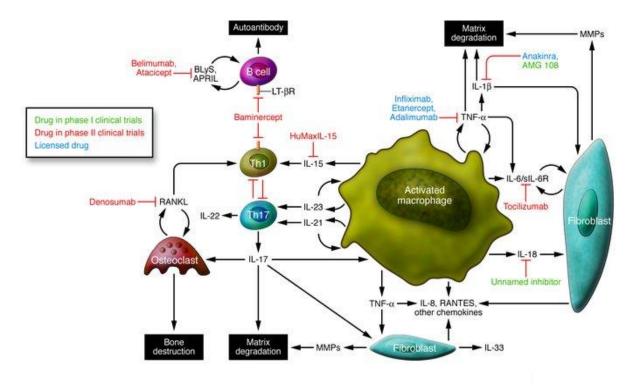
In rheumatoid arthritis TNF- α is mainly produced by activated macrophages in synovium


Pleiotropic cytokine

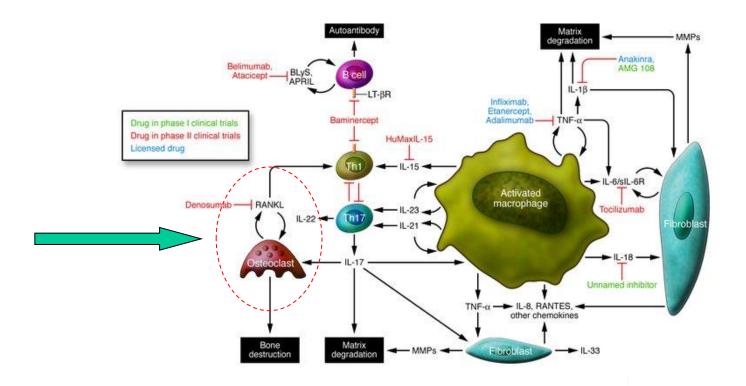
Actions of TNF- α relevant to pathogenesis of rheumatoid arthritis:

FM Brennan and IB McInnes. Evidence that cytokines play a role in rheumatoid arthritis. 2008. *Journal of Clinical Investigation*, 118:11. 3537-3545.

<u>Major role of TNF- α in pathogenesis of rheumatoid arthritis validated by</u> <u>major therapeutic success of drugs that specifically inhibit TNF- α :</u>



http://www.laskerfoundation.org/awards/2003clinical.htm


M. Feldmann and RN Maini. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nature Medicine 2003, 9:1245-1250.

Many other cytokines under investigation as possible therapeutic targets in rheumatoid arthritis:

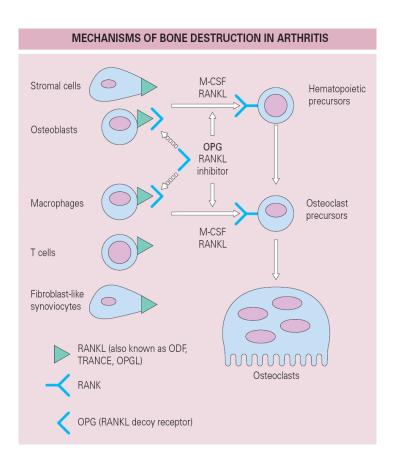
FM Brennan and IB McInnes. Evidence that cytokines play a role in rheumatoid arthritis. 2008. *Journal of Clinical Investigation*, 118:11. 3537-3545.

Mechanisms of bone destruction in rheumatoid arthritis:

FM Brennan and IB McInnes. Evidence that cytokines play a role in rheumatoid arthritis. 2008. *Journal of Clinical Investigation*, 118:11. 3537-3545.

RANKL is important in bone destruction in rheumatoid arthritis:

- RANKL (receptor activator of nuclear factor κ B ligand)
- Produced by T cells and synovial fibroblasts in rheumatoid arthritis
- Acts to stimulate osteoclast formation (osteoclastogenesis)
- Upregulated by:
 - INTERLEUKIN-1, TNF- α
 - INTERLEUKIN-17 potent action on osteoclastogenesis via RANKL-RANK pathway
 - PTH-related PEPTIDE
- Binds to ligand on osteoclast precursors (RANK)
- Action antagonised by decoy receptor osteoprotegerin (OPG)

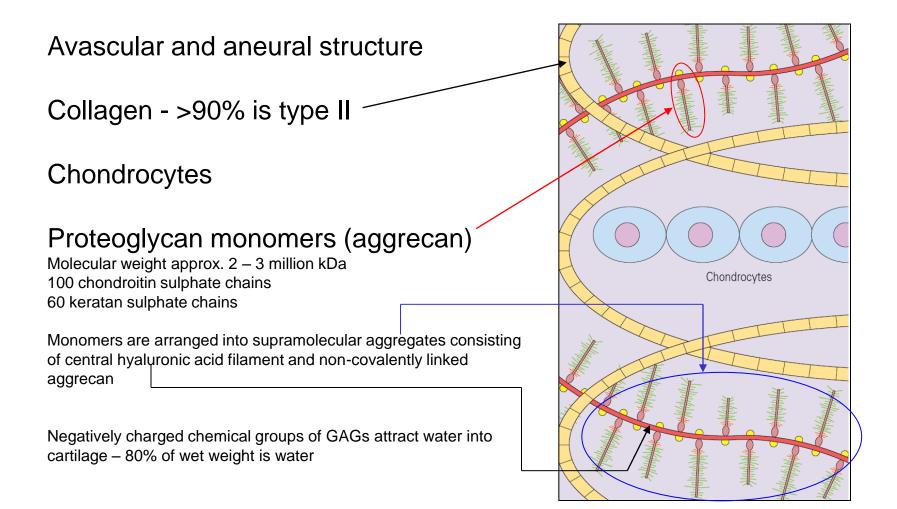

Mechanisms of bone destruction in rheumatoid arthritis:

Denosumab

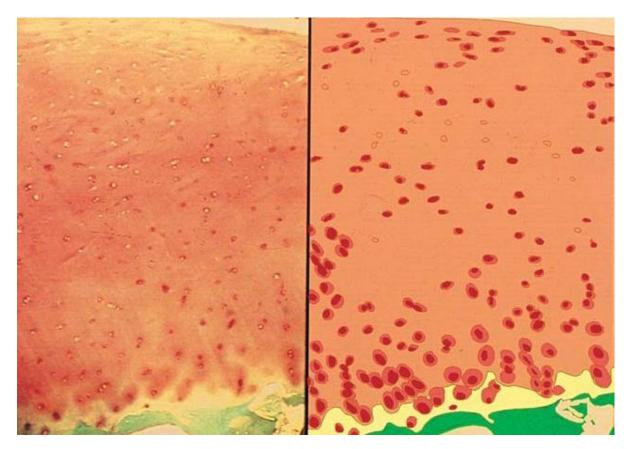
Denosumab is a fully human monoclonal antibody that specifically targets a ligand known as RANKL (that binds to a receptor known as RANK) which is a key mediator of osteoclast formation, function, and survival. Denosumab is being studied across a range of conditions including osteoporosis, treatment-induced bone loss, bone metastases, multiple myeloma and rheumatoid arthritis.

Amgen website 2009

http://www.amgen.com/science/pipe_denosumab.html



Articular pathology


- Rheumatoid arthritis
- Osteoarthritis

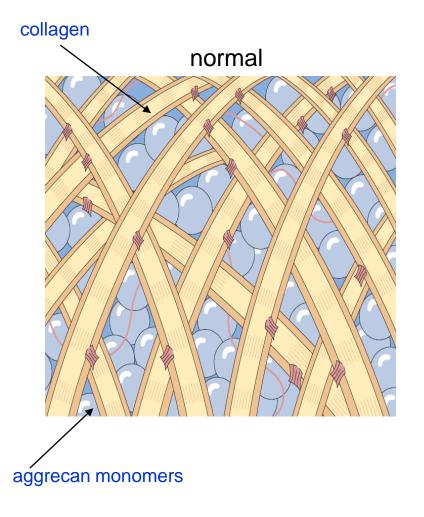
- Irreversible loss of articular cartilage
- Normal weight-bearing properties of articular cartilage depend on intact collagen scaffold and high aggrecan content
- Collagen and aggrecan turnover is slow
 - half-life aggrecan $\sim 3 4$ years
 - half-life collagen ~ decades

Articular cartilage - normal

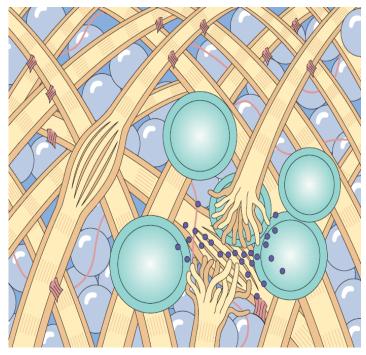
Articular cartilage - normal

cartilage surface

osteochondral junction


histology

schematic

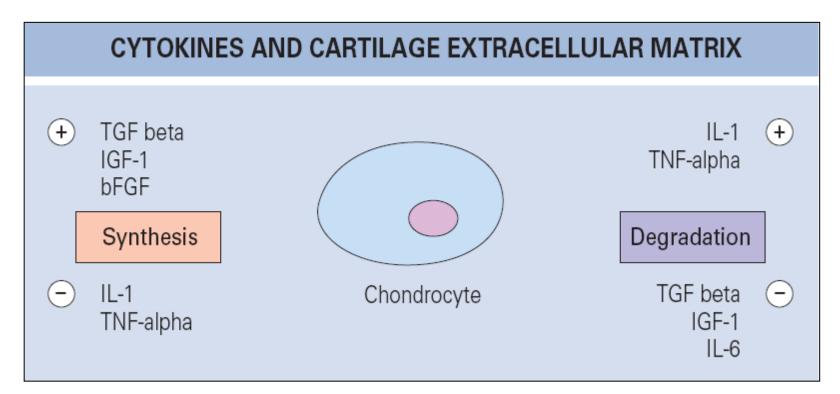

- Cartilage changes in osteoarthritis
 - reduced proteoglycan
 - increased cartilage hydration
 - reduced collagen

chondromalacia

Chondromalacia = softening of cartilage because of increased water : proteoglycan ratio in cartilage matrix

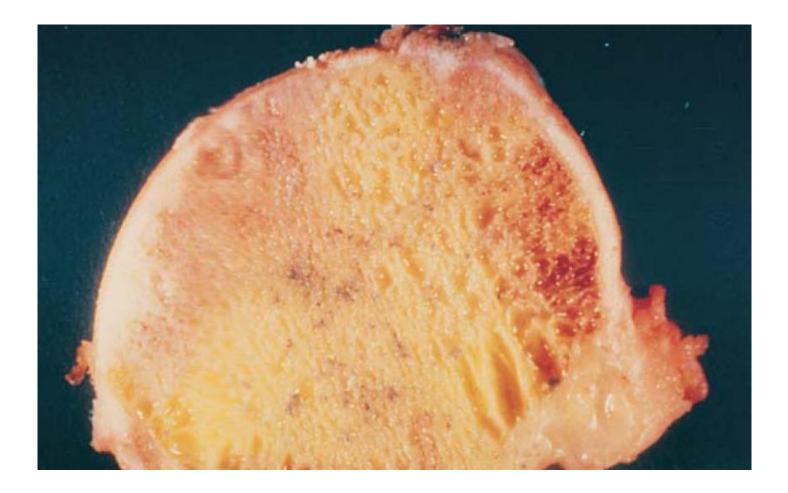
osteoarthritis

loss of aggrecan \rightarrow swollen proteoglycan molecules collagen degradation \rightarrow damaged collagen network

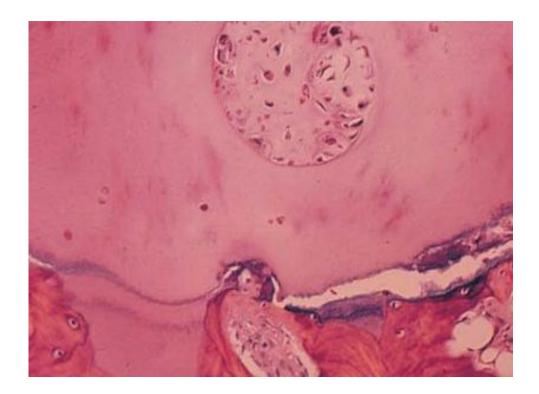

- Cleavage of aggrecan in osteoarthritis mediated by ADAMTS aggrecanases
- aggrecan fragments
 present in osteoarthritis joint

• ADAMTS-4, -5 important in the cleavage of aggrecan *in vitro* and in animal models

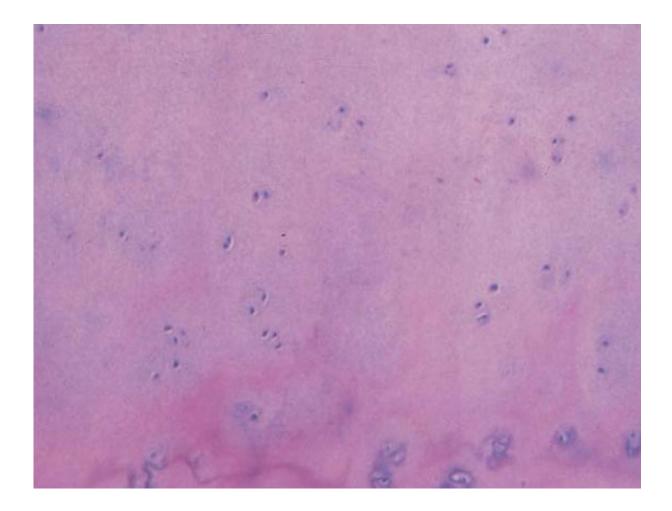
• ? Small molecule inhibitors of ADAMTS-4, -5 future therapies for osteoarthritis


- Cartilage changes in osteoarthritis
 - reduced proteoglycan
 - increased cartilage hydration
 - reduced collagen
 - increased chondrocyte proliferation
 - intrinsic repair mechanism \rightarrow matrix synthesis
 - abnormal mechanical stress leads to chondrocyte producing inflammatory mediators in osteoarthritic tissue e.g. growth factors and cytokines which may have important roles in the disease
 - focal areas of chondrocyte apoptosis

• Examples of cytokines influencing cartilage matrix synthesis and degradation



- Bone changes in osteoarthritis
 - Changes in denuded sub-articular bone
 - Proliferation of superficial osteoblasts results in production of sclerotic bone
 - Focal stress on sclerotic bone can result in focal superficial necrosis in underlying bone and bone marrow


Examples of pathology in osteoarthritis

Loss of articular cartilage with underlying superficial bone necrosis (yellow area)

Areas of chondrocytes proliferation in cartilage (intrinsic repair)

Areas of cartilage with no chondrocytes due to focal cell necrosis

 Unlike rheumatoid arthritis no <u>disease</u> <u>modifying</u> <u>osteoarthritis drug</u> (DMOAD)

Possible strategies:

- Prevent matrix degradation
 - ? aggrecanase inhibitors
 - ? anti-cytokine e.g. anti-interleukin-1 antibodies
- Stimulate matrix synthesis
 - ? stimulate chondrogenesis (bone morphogenetic protein-4)

Summary

- Connective tissue turnover is mediated by matrix proteinases through complex regulatory networks
- Rheumatoid arthritis and osteoarthritis represent the two major articular pathologies
- Rheumatoid is a disease of synovium whilst osteoarthritis is disease of articular cartilage
- Impressive advances in rheumatoid arthritis therapy have been made but this has not been achieved for osteoarthritis

Comment

- I hope that this presentation will evolve over time in a Darwinian fashion. The 'environmental pressures' driving this adaptation are (1) medical advances and (2) student feedback. In the current economic climate there is not much research money to achieve (1) so (2) is critically important.
- Comments (polite) to: matthew.pickering@imperial.ac.uk