Type 1 and Type 2 Diabetes

Dr Tricia Tan

Consultant Endocrinologist

t.tan@imperial.ac.uk

Worldwide, there are >170 million with diabetes mellitus 2.7 million in UK (nearly 1 in 20)

- This prevalence will double before 2030
- •Worldwide 3.2 million deaths annually attributable to diabetes
- •Commonest cause of end stage renal failure, blindness and non-traumatic amputations

Worldwide, there are >170 million with diabetes mellitus

- The increase in diabetes is linked strongly to the increasing prevalence of obesity
- •25% of UK obese, 32-42% overweight

Aims

- Acquire a basic understanding of:
 - clinical aspects of diabetes mellitus
 - its pathophysiology
 - Its subtypes
 - diabetes treatments
 - diabetes complications

Learning outcomes

- List the signs and symptoms of DM
- Distinguish between T1DM and T2DM
- Understand their pathophysiology
- Know the treatment options appropriate to each type
- Classify types of complications
- Have a theoretical knowledge of managing diabetic emergencies

Compare and Contrast

	Type 1	Type 2
Age onset	Young	Mature
Insulin levels	Low (zero)	High
Aetiology	Insulin deficiency	Insulin resistance
Pathogenesis	Autoimmune	Obesity
Body Habitus	Thin	Normal/↑BMI
Hyperglycaemic crisis	DKA	HHS
Treatment	Mandatory insulin	Diet/OHAs/insulin
GAD Abs	+ve	-ve
C peptide	Low	High

In Reality

- T2DM Type 2 DM
 Rabson-Mendenhall syndrome = severe genetic insulin receptor defect
- Others eg mitochondrial, secondary

Symptoms and Signs

- Polyuria, polydipsia, dehydration
- Blurring of vision
- Weight loss & cachexia
- Infections
- Ketotic foetor
- Glycosuria
- Delirium and coma

Pathophysiology of T2DM

- INSULIN RESISTANCE
 - Related to adipose tissue "dysfunction"
 - Visceral > Subcutaneous obesity
- plus β CELL FAILURE
- Associated with
 - Hypertension, dyslipidaemia, PCOS
- Stronger genetic component than T1DM
- Ethnically linked
 - S Asian Indians
 - Pima Indians in Arizona

Metabolic syndrome (WHO)

- One of:
 - T2DM / Imp gluc tolerance / Imp fasting gluc / Insulin resistance
- Plus two of:
 - BP ≥140/90
 - Trigs ≥1.695 and HDL ≤ $0.9(M) \le 1.0 (F)$
 - Central obesity: waist:hip >0.90 (M) >0.85(F) or BMI >30
 - Microalbuminuria: Alb:Creat ratio ≥30 mg/g

Pathophysiology of T1DM

- Autoimmune destruction of islets
- Combination of
 - genetic predisposition (HLA DR3 & 4)
 - viral infection (Coxsackie)
 - > T-cell mediated ß cell destruction.
- 30-50% concordance in identical twins
- Geographic factors
 - Most common in European population
 - ?link to Vit D deficiency

Diagnosis of Diabetes

If symptoms, DM=

- Fasting plasma glucose ≥7.0 mmol/L
- Random PG or 2 hour OGTT ≥11.1
- If no symptoms, DM=
- Two of above criteria
 Impaired Gluc Tolerance=
- Fasting PG <7.0, 2 hr OGTT ≥7.8 but <11.1
 Impaired Fasting Gluc=
- Fasting PG ≥6.1 but <7.0

Complications

Diabetic Ketoacidosis

Hyperglycaemic Hyperosmolar State (HHS or "HONK")

Complications

Microvascular

- Glycosylation of basement membrane proteins -> "leaky" capillaries
- Retinopathy
- Nephropathy
- Neuropathy

Macrovascular

- Dyslipidaemia, hypertension
- IHD
- CVA
- Peripheral vascular disease

Treatment

T2DM treatment

- Mediterranean diet
 - Olive oil, fruit & veg, fish, white meats
- Exercise
 - 3x 60 mins per week
 - Moderate physical activity
- Loss of weight
 - Bariatric surgery as new treatment?

T2DM Drugs

Example	Class	Mode of Action	Notes
Metformin	Biguanide	Insulin sensitizer	CKD, lactate
Gliclazide	Sulphonylurea	Secretagogue	Wt gain, hypo
Repaglinide	Meglitinide	Secretagogue	Not v useful
Acarbose	Glucosidase inhibitor	Retards CHO abs	Flatus+++
Pioglitazone	TZD	Insulin sensitizer	Arm #/CCF
Exenatide	GLP1-analogu	e Secretagogue	Injections
Sitagliptin	DPP-IV inh	Secretagogue	New

Insulin Synthesis and Secretion

- •50 AA peptide, 3 intramolecular disulphide bridges, 5808 kDa
- Synthesised as preproinsulin
- •ER peptidases cleave C-peptide
- •Half life of insulin in the circulation = 6 minutes

BD Mixed insulin

Advantage: fewer injections/day Disadvantage: less flexibility simpler

Advantage: Flexibilty Disadvantage: 4 injections/day or needs pump

Insulin Regimens

Basal/Bolus eg Insulatard/Actrapid

Twice Daily Mixed/Biphasic eg Mixtard 30

Glucagon-like peptide 1 (GLP-1)

- Stimulates Insulin secretion
- Inhibits Glucagon secretion
- Inhibits Gastric emptying
- •Inhibits Appetite
- Stimulates Nausea

Why we treat diabetes

Aims of treatment

- Relieve symptoms of hyperglycaemia
 - Fatigue
 - Polyuria, polydipsia
 - Weight loss

- Prevent complications
 - Microvascular: retinal, renal, neural
 - Macrovascular: MI, stroke, peripheral vessels

What is HbA1c?

- Non-enzymatic glycosylated product of Hb (N-terminus of ß-chain HbA0)
- Mostly measures average glycaemia over 2-4 weeks
- HPLC, immunoassay,
 boronate affinity
 chromatography

- Rapidly available
- Point of care testing in 5 minutes

HbA1c FOR THE DIAGNOSIS OF DIABETES

- Recommendations from the WHO 2011:
 - An HbA1c of 6.5% is recommended as the cut off point for diagnosing diabetes.
 - A value of less than 6.5% does not exclude diabetes diagnosed using glucose tests.

HbA1c – Change in Units

 Until 2009, it was traditional to express HbA1c as %

HbA1c is now expressed as mmol/mol

DCCT- HbA1c %	IFCC-HbA1c mmol/mol
6.0	42
6.5	48
7.0	53
7.5	58
8.0	64
9.0	75
10.0	86

UKPDS 35. BMJ 2000; 321: 405-12

UKPDS 33: intensive therapy reduced HbA1c

Intensive policy, median HbA_{1c} 7.0% Dashed lines indicate patients followed for 10 years Conventional policy, median HbA_{1c} 7.9% Dashed lines indicate all patients assigned to regimen

Lancet 1998;352:837–53

UKPDS 33: intensive therapy reduced microvascular events

Lancet 1998;352:837-53

UKPDS 33: relative risk reduction with intensive treatment

Intensive treatment reduced HbA_{1c} by 0.9% for a median of 10 years in 3,867 patients with type 2 diabetes

* p < 0.05 ** p < 0.01

Summary

T1DM is

- due to autoimmune islet destruction causing insulin deficiency
- treated with insulin replacement therapy

T2DM is

- due to insulin resistance plus ß cell failure
- treated with diet, OHAs and eventually insulin
- Complications of both types
 - broadly similar
 - can be classified as macro- and micro- vascular
- Treatment is aimed to
 - Relieve symptoms
 - Prevent complications