

The Endocrine Pancreas

Dr Tricia Tan Consultant Endocrinologist

t.tan@imperial.ac.uk

Worldwide, there are 170 million people with diabetes mellitus

- •This prevalence will double before 2030
- •2.7 million with diabetes mellitus in UK
- •3.2 million deaths annually directly attributable to diabetes
- •Commonest cause of end stage renal failure, blindness and non-traumatic amputations

- Aims:
 - To explain the endocrine pancreas and how it regulates carbohydrate, lipid and protein metabolism
- Learning outcomes:
 - Know the anatomy, embryology and physiology of the endocrine pancreas
 - Be able to describe functioning of alpha and beta cells ie regulation of insulin and glucagon secretion
 - Describe glucose sensing by the beta cell
 - List the principal actions of insulin and glucagon
 - Integrate the actions of insulin on intermediary metabolism

Pancreas - Anatomy

Pancreas - Embryology

- Develops from two buds from the primitive gut
- Buds grow, branch and fuse
- Islet cells differentiate from cells adjacent to buds
- Endocrine function from 10–15 weeks

Nature Reviews | Genetics

Banting/Best/Collip Isolate Insulin in 1920

Insulin Synthesis and Secretion

Time

•50 AA peptide, 3 intramolecular disulphide bridges, 5808 kDa

- •Synthesised as preproinsulin
- •Peptidases cleave C-peptide off
- •Half life of insulin in the circulation = 6 minutes

Physiological Insulin Profile:

Insulin Release

Biphasic insulin release

Glucose sensor in beta cells

Glucagon-like peptide 1 (GLP-1) is an incretin

Stimulates Insulin secretion

- Inhibits Glucagon secretion
- Inhibits Gastric emptying
- Inhibits Appetite
- Stimulates Nausea

Molecular Basis of Insulin Action

Intermediary Metabolism

All reactions concerned with storing and generating metabolic energy. Using that energy in cellular processes

Insulin & Intermediary Metabolism

Actions of Insulin

- Carbohydrate
 - Glucose uptake
 - Glycogenesis
 - Inhibit glycogenolysis
 - Inhibit gluconeogene sis

- Lipid
 - Inhibit HSL
 - Hepatic fatty Anabolic acid
 - synthesis
 - Suppress ketone body production

- Protein \bullet
 - Aa uptake

- Others
 - K⁺ uptake
 - $-H_2O$ retention

Glucagon

- 29 Aa peptide hormone from alpha cells
- Synthesised from preproglucagon

Mammalian Preproglucagon

- Released in response to low blood glucose
- Stimulates glycogenolysis and gluconeogenesis
- Disordered secretion also occurs in diabetes mellitus

Insulin & Intermediary Metabolism

GCG & Intermediary Metabolism

N.B.

- Islets do secrete other hormones
 - Pancreatic Polypeptide
 - Vasoactive Intestinal Polypeptide
 - Ghrelin
 - Gastrin
 - Somatostatin
- Rarely functional endocrine tumours of the pancreas release these hormones
- This can occur in genetic diseases such as multiple endocrine neoplasia type 1

Summary

- The endocrine pancreas mainly secretes insulin (β cells) and glucagon (α cells)
- They have opposing effects on blood glucose (insulin↓, glucagon↑)
- Insulin controls much more than just carbohydrate metabolism (lipids and protein, K)
- The principal insulin-responsive tissues are liver, adipose
 and muscle
- Diabetes mellitus, the commonest endocrinopathy is caused by a lack of insulin action and excessive glucagon
- Neuroendocrine tumours of the pancreas are rare but important (especially at Hammersmith Hospital!)