Evaluating diagnostic technologies: sensitivity, specificity & false reporting

Mr. Panagiotis Georgiou MD MRCS Academic Clinical Fellow in G. Surgery Imperial College, London, UK

Aims of Lecture

 Demonstrate the various methods of evaluating diagnostic technologies in terms of sensitivity, specificity and false reporting

Discuss the use of diagnostic technologies for population-based screening and targeted screening of disease

Construct an argument for imaging-based follow-up strategies of curative surgical procedures

Diagnostic technologies

X-Rays

- 1895
- Dr Wilhem Rontgen

USS

- **1956**
- Prof lan Donald
- O&G
- Endoscopic
- Intraoperative

_ CT

- 1972
- Dr Godfrey Hounsfield
- Quality improved

MRI

- **1967**
- Nottingham
- No Clinical Use
- **1980's**
- DW-MRI
- Nuclear Medicine
 - 1896
 - Thyroid
 - PET
 - PET/CT
 - PET/MRI

Which technology?

Identify Strengths and Weaknesses

Improve technology and knowledge

Re-evaluate

Research

Diagnostic Accuracy Studies
 STARD Criteria (25)
 Compare
 Prospective or Retrospective

Meta-analysis

Characteristics of Diagnostic Tests

Test effectiveness measured as
Sensitivity: ability to confirm disease
Specificity: ability to identify disease absence
Clinical importance related to predictive ability

Positive Predictive Value: proportion testing positive who actually have the disease

Negative Predictive Value: proportion testing negative who do not have the disease

1st Step

Technology to be evaluated

Disease/Condition
 Specific question to be answered

Study Population

Reference Standard

Index Test

Blinded radiologists (at least 2)
Level of expertise
Standardised report i.e. proforma

Agreement/Interobserver agreement

Reference Test

Defines the presence or absence of disease
Ideally should be 100% accurate
Applicable results to all patients within the group
?

Degree of compromisePeriod of follow up may be necessary

Blinding

Blinding of Radiologists

- Blinded to Reference test outcome
- Blinded to Surgical outcome

Blinding of Reference Test assessor
Blinded to Index test result
Blinded to Surgical outcome

Eliminates biased outcome assessment

Case-Selection

Performance of reference test relies on the performance of index test

Incorporation bias

Time Interval between index and reference test

Not blinded radiologists/reference standard assessor

Avoid Bias

Representative group of patients with disease

Index test is compared to an independent reference test

Radiologists and reporters of reference tests are all blinded to outcome (s).

Definitions 2x2 table

Definitions

- True Positive
 - Correct diagnosis of presence of disease/condition
- True Negative
 - Correct diagnosis of absence of disease/condition
- False Positive
 - Incorrect diagnosis of presence of disease/condition
- False Negative
 - Incorrect diagnosis of absence of disease/condition

Sensitivity

- Proportion of those with disease who test positive in the study group. (Positive in disease)
- How good the index test is to *pick up* the disease.

Sensitivity = TP / (TP+FN) = a / (a+c)

Sensitivity

		Reference Test		
			Positive	Negative
Index Test	Positive		TP (a)	FP (b)
	Negative		FN (c)	TN (d)
			Sensitivity TP/Presence	

Specificity

Proportion of those without disease who test negative in study group. (Negative in health)
How good the test is to *exclude* the disease.

Specificity = TN / (TN+FP) = d / (d+b)

Sensitivity

		Reference Test	
		Positive	Negative
Index Test	Positive	TP (a)	FP (b)
	Negative	FN (c)	TN (d)
			Specificity TN/ABscence

The Ideal Situation

100% Agreement

Reality

Consequences of a False Positive

Follow-up tests

Cost

Potential harm
Surgery
More tests

Consequences of a False Negative

Disease undetected and progress

At best, a false sense of security (screening)

 Might neglect future screening tests (screening)

The Tradeoff: Sensitivity vs. Specificity

If missing cancers is a concern, sensitivity can be raised by adjusting the diagnostic cut point for a positive result
But, the false positive rate will also increase
Impact on screening program costs?

Specificity may be the determining factor in the success of screening programs

Changing a Diagnostic Cut Point

Figure 2.—Sensitivity and specificity for prostate-specific antigen and prostate cancer at various cutoff points, during 7 years of follow-up: Physicians' Health Study (203 cases and 609 controls).

Predictive Values

- Important for the Clinician
- If a test result is positive, how likely is it that this individual has the disease?
- Predictive value varies with the prevalence of the disease in the screened population

Bayes' theorem: As the prevalence of a disease increases, the positive predictive value of the test increases (PPV) and its negative predictive value (NPV) decreases.

Positive Predictive Value

Probability that a positive test indicated the presence of disease.

Depends on prevalence

 $\square PPV = TP / (TP+FP) = a / (a+b)$

Positive Predictive Value

Negative Predictive Value

The probability that a negative test result indicated the absence of disease.
 Depends on prevalence

 \square NPV= TN / (TN+FM) = c / (c+d)

Positive Predictive Value

Prevalence

Sensitivity = 99%; Specificity = 95%

Prevalence = 1%	Disease Yes	Disease No	PPV
Positive result	99	495	
Negative result	1	9405	
Total	100	9900	17%
Prevalence = 5%			
Positive result	495	475	
Negative result	5	9025	
Total	500	9500	51%

The Ideal Situation

Reality

		Reference Test		
		Positive	Negative	
Index Test	Positive	170	30	85%
	Negative	30	770	96.25%

Level of Agreement

Importance Reproducibility of outcomes

Assessment

Cohen's kappa (k) coefficient

Cohen's Kappa Coefficient

Inter-observer agreement
 Reproducibility of results

$$\mathbf{K} = \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)}$$

k	Agreement
< 0.20	Poor
0.20 - 0.40	Fair
0.40 - 0.60	Moderate
0.60 - 0.80	Good
0.80 - 1.00	Very Good

Receiver-Operating Characteristic (ROC) Curve Graphical Plot

Summarize sensitivity and specificity as cutoff changes

Set a cutoff

Compare index tests

ROC Curve for endometrial thickness

(false positive)

Screening - WHO

- Important Health Problem
- Should be a treatment
- Facilities for diagnosis and treatment available
- Latent stage of disease
- Should be a test
- Natural History of disease understood
- Clear Guidelines for treatment
- Cost
- Continuous Process

Changing a Diagnostic Cut Point

Figure 2.—Sensitivity and specificity for prostate-specific antigen and prostate cancer at various cutoff points, during 7 years of follow-up: Physicians' Health Study (203 cases and 609 controls).

Adjusting the Cutpoint

Increase sensitivity when dealing with cancer

This will increase FP

Impact on Specificity

Increase Cost of further investigation

Use of a 2nd screening test with high specificity to filter FP

Faecal Occult Blood Test

■ Age >60

High Sensitivity
 Poor Specificity
 Benign conditions

Positive resultEndoscopic studies

Cervical Smear – Pap Test

- **Females 21-65**
- To detect pre-cancerous conditions
 High sensitivity
 Low specificity
- If positive
 HPV test to exclude viral infection
 Further investigation
 Adjust Follow up

Limitations of Screening

- Consequences of FP and FN
- Resources
- Complications from Screening test
- Bias
 - Lead Time Bias
 Length Time Bias
 Overdiagnosis

Follow Up Post Curative Surgery

The same as screening Changes from Surgery Inflammation Anatomy changes Length of Follow up Natural History of disease Stage of Disease Timing - Majority of Recurrences – More often ■ When to stop

CRC Follow up

- Majority of recurrences within 2 years
 CEA
 - 3 monthly for first 2 years
 - 6 monthly for 3rd year
 - Then yearly

CT and MRI
6 monthly for 2 years
Then yearly
PET scan on suspicion

Follow up stops at 5 years

Thank you

Practice ?

Example 1 – Pelvis AB PR

		Histopathology		
		Positive	Negative	
MRI	Positive	40	3	93%
	Negative	2	19	90.5%
		95.2%	86.4%	

Example 2 – Pelvis Lateral

		Histopathology		
		Positive	Negative	
MRI	Positive	25	5	83.3%
	Negative	3	31	91.2%
		89.3%	86.1%	

Example 3 – Pelvis AB PR

		Histopathology		
		Positive	Negative	
MRI	Positive	17	3	85%
	Negative	1	43	97.7%
		94.4%	93.5%	