Ion channels and disease: Channelopathies

Dr Stefan Trapp

Channelopathies

"...nor is there any better way to advance the proper practice of medicine than to give our minds to the discovery of the usual form of nature, by careful investigation of the rarer forms of disease."

William Harvey 1657

Channelopathies

Prime examples to aid our understanding of the role of ion channels in health and disease

Congenital Channelopathies

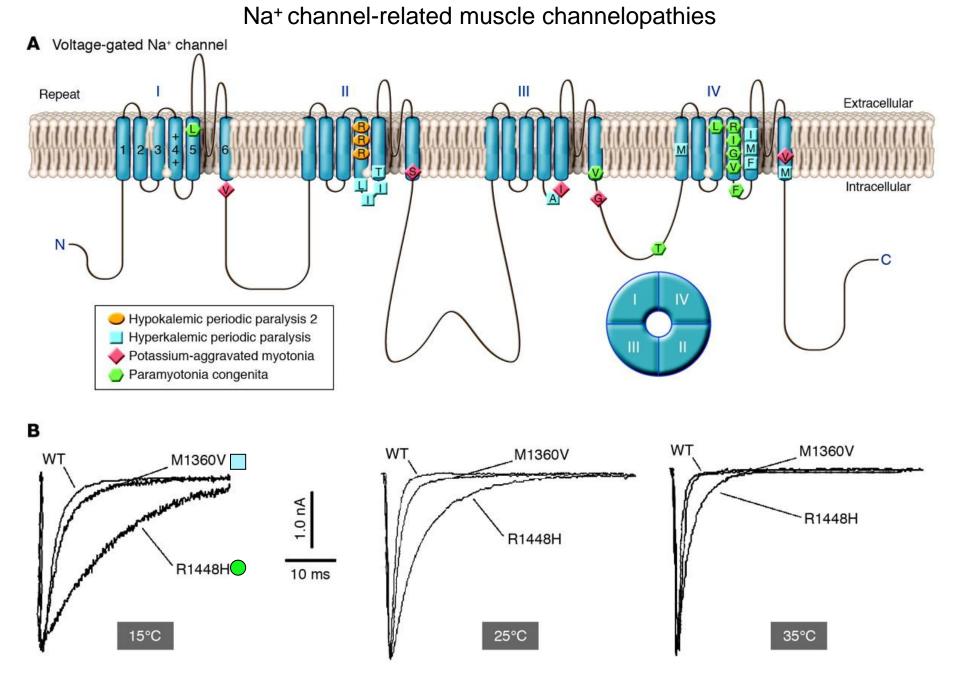
-mutation in gene encoding ion channel

Acquired Channelopathies

-autoimmune disease (e.g. Myasthenia gravis) -dysregulation of protein expression

Congenital channelopathies can produce a major insight into the structure-function relationship in ion channels

Channelopathies

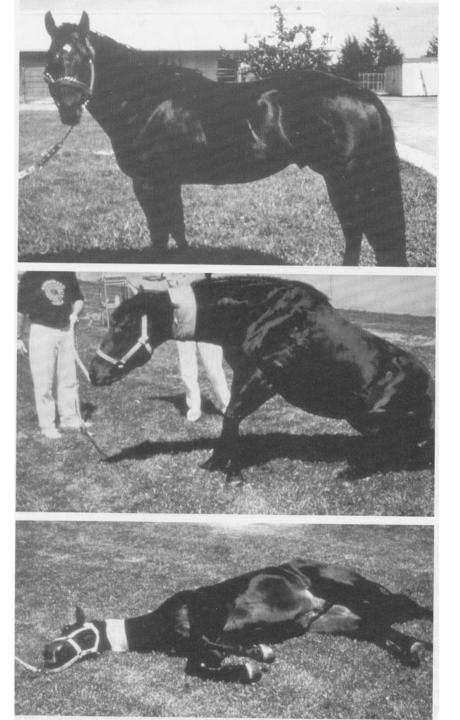

Major advances over the past 25 years

Facilitated by advances in:

- Genetics
 - Cloning techniques
 - Automated sequencing
 - Linkage analysis
- Molecular biology
 - Recombinant expression systems
 - Site-directed mutagenesis
 - Transgenic animal models
- Electrophysiology
 - Patch-clamp technique

Four examples

- Congenital indifference to pain and related syndromes
- 'stiff legged goats' and related myotonias
- Startle Disease
- Long QT syndrome



Jurkat-Rott, K. et al. J. Clin. Invest. 2005;115:2000-2009

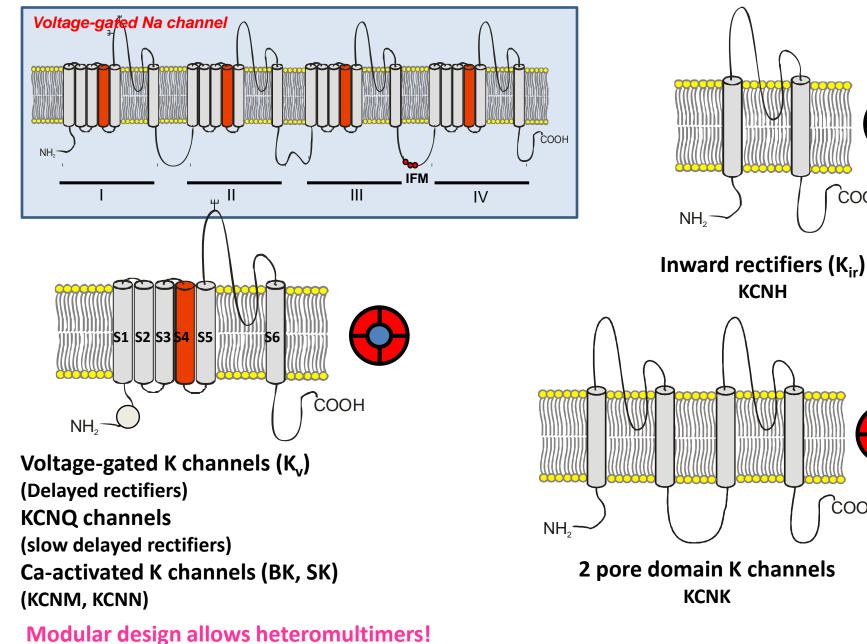
equine hyperkalaemic periodic paralysis

'common' in American thoroughbred quarter horses

Very well developed musculature Most famous stallion 'Impressive'

Injection of KCI induces attack of paralysis

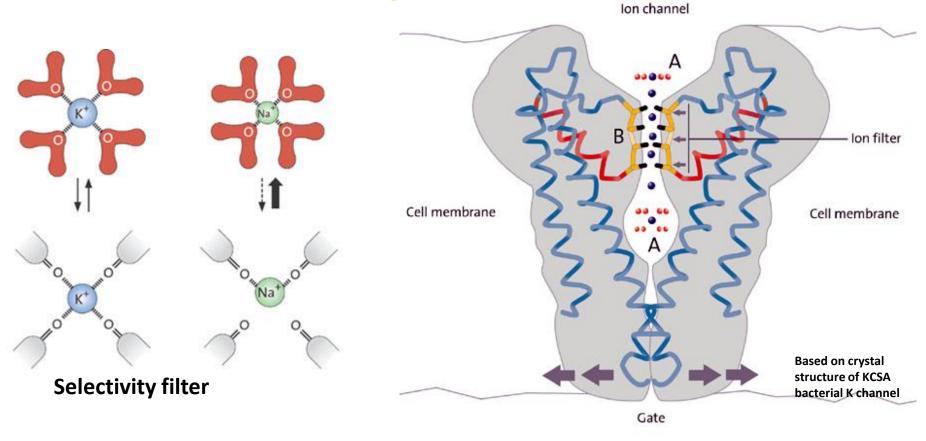
Computer simulations of electrical activity in a model muscle cell


'Francis Crick ... said that in the pioneering days of structure determination researchers were driven by the conviction that once they had solved a biological structure, its function or mechanism would become immediately obvious....

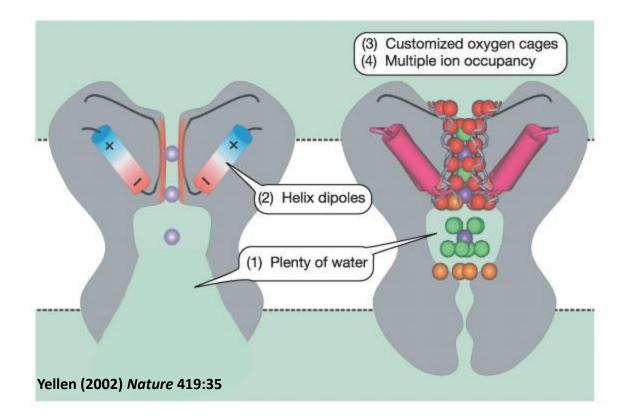
Fersht, AR (1995). Curr.Opin.Struct.Biol.5-79-84.

K channels are the most diverse ion channel family

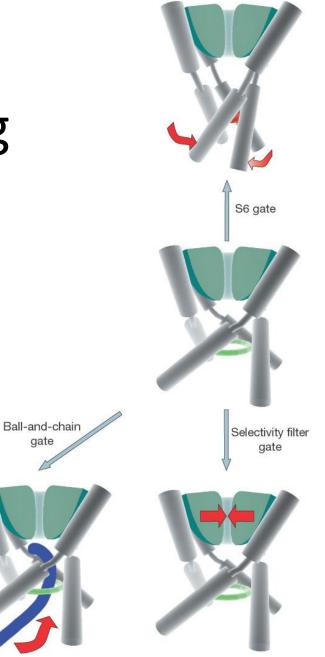
ĊOOH


СООН

K channel structural features


2 essential functional features

- High throughput
- High selectivity


Consensus sequence in pore loop:TXXTXGYGD K channel signature sequence

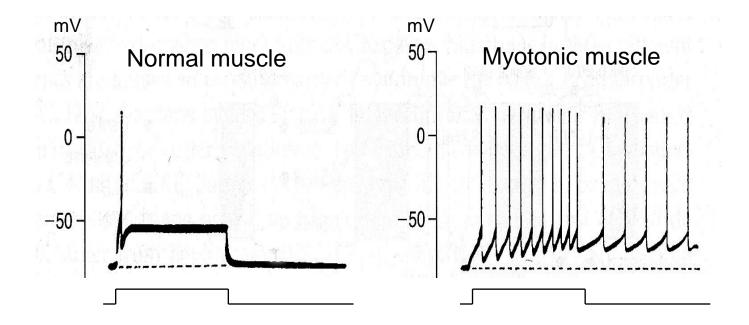
High throughput

No ionic charges involved!

K channel gating

'Stiff-legged' Myotonic goats

"a herd of goats in Texas that fell over every time the train went past their field"



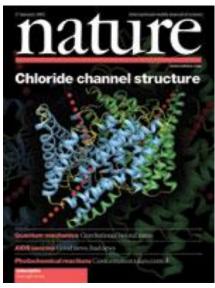
Congenital myotonia

- Muscle stiffness, alleviated by warm-up
- Continuous muscle activity produces well-developed muscles (attractive for breeders)

First channelopathy identified (Bryant 1969)

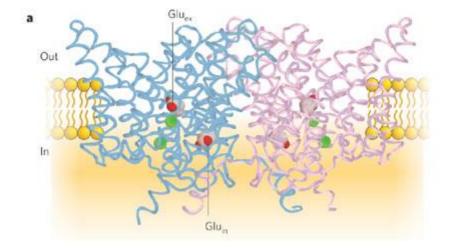
Myotonic muscle shows enhanced excitability (due to reduced chloride conductance)

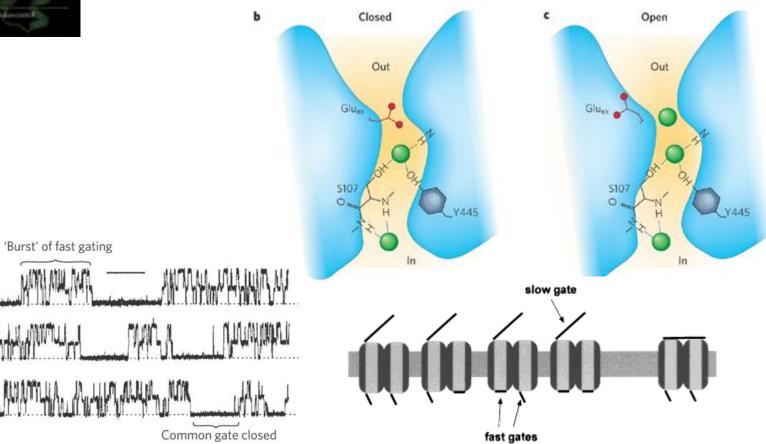
Adrian & Bryant (1974) J Physiol 240, 505


CLC-1 channel mutations cause myotonia

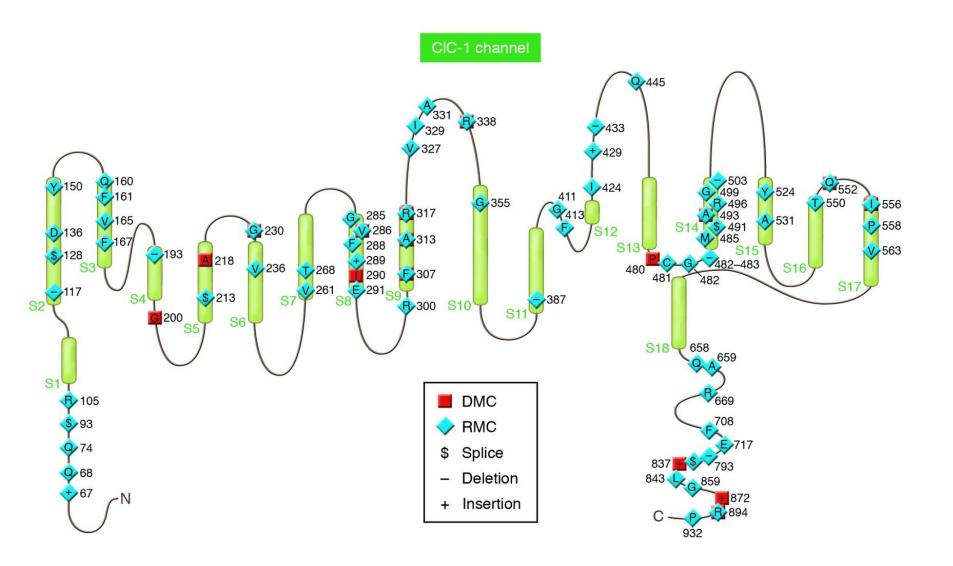
- Results from a loss-of-function mutation in CLCN1, the gene encoding the skeletal muscle Cl⁻ channel.
- Mutations in the human *CLCN1* gene cause *Myotonia congenita* (Thomsen's disease; 1876) and *Generalised myotonia* (Becker's Disease; 1957)

How can a loss of Cl⁻ conductance lead to myotonia?


Isn't the K⁺ conductance responsible for repolarisation after an action potential?


Extracellular potassium accumulation (in T-tubules)

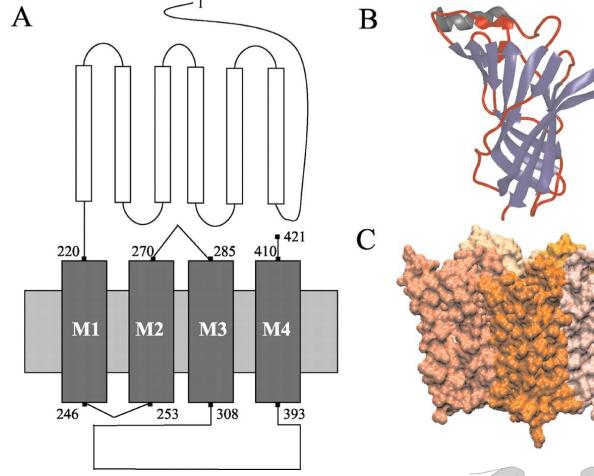
2


0

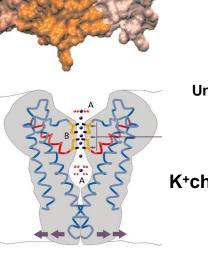
'Francis Crick ... said that in the pioneering days of structure determination researchers were driven by the conviction that once they had solved a biological structure, its function or mechanism would become immediately obvious. It came as a shock when they found this was not necessarily so and that the opposite was more frequently true'

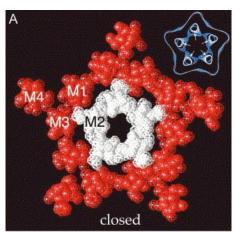
Fersht, AR (1995). Curr.Opin.Struct.Biol.5-79-84.

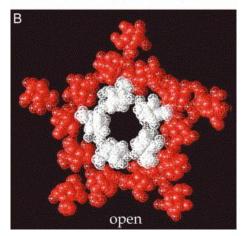
DMC: dominant myotonia congenita RMC: recessive myotonia congenita


Startle disease

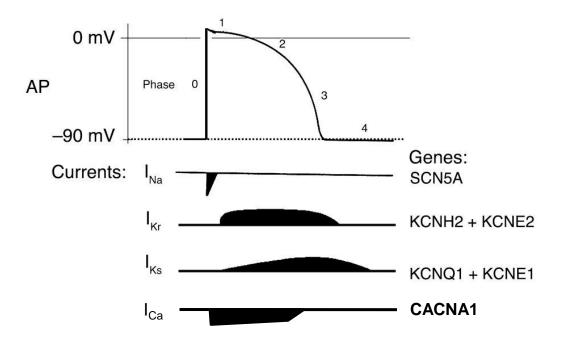
- Spasmodic mouse
- Cattle myoclonus
- Hyperekplexia


Glycine receptor mutations causing Startle Disease in human, mouse & cattle


Mutation and Subunit	Inheritance Mode	Effect on GlyR Function
α1 P250T	Autosomal dominant	Reduced single-channel conductance, reduced glycine sensitivity, increased desensitization rate
α1 V260M	Autosomal dominant	As yet unknown
α1 Q266H	Autosomal dominant	Reduced open probability, reduced glycine sensitivity
α1 S270T	Autosomal dominant	As yet unknown
α1 R271L/Q	Autosomal dominant	Reduced glycine sensitivity, reduced single-channel conductance
α1 K276E	Autosomal dominant	Reduced glycine sensitivity, reduced open probability
α1 Y279C	Autosomal dominant, variable penetrance	Reduced glycine sensitivity, reduced whole cell current magnitude
α1 I244N	Autosomal recessive	Reduced glycine sensitivity, reduced whole cell current magnitude, increased desensitization rate
α 1 Deletion of exons 1-6	Autosomal recessive	Presumed nonfunctional
α1 S231R	Autosomal recessive	Reduced membrane insertion
α1 Stop codon at Y202	Autosomal recessive	Reduced surface expression, possible heterozygosity with $\alpha 1$ V147M
α1 G342S	Compound heterozygous?	No effect of individual mutation, possible heterozygosity with other mutations
α1 R252H + α1 R392H	Compound heterozygous	Reduced membrane insertion
β G229D + β exon 5 loss	Compound heterozygous	Reduced glycine sensitivity, reduced surface expression
βLine-1 intronic insertion	Autosomal recessive (Spastic)	Reduced surface expression
α1 A52S	Autosomal recessive (Spasmodic)	Reduced glycine sensitivity
α1 Stop codon	Autosomal recessive (Oscillator)	Reduced surface expression
α1 Stop codon	Autosomal recessive (Myoclonus)	Reduced surface expression

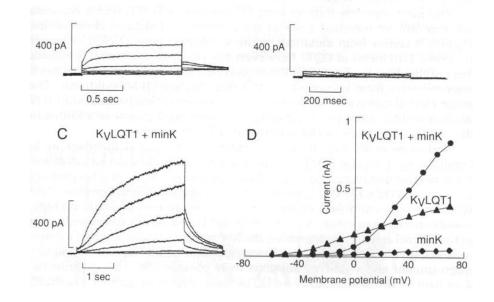

Nicotinicoid receptor structures (Acetylcholine receptor, GABA receptor, Glycine receptor)

Cascio, M. J. Biol. Chem. 2004;279:19383-19386



Unwin, N. FEBS Letters 2003; 555:91-95

K⁺channel

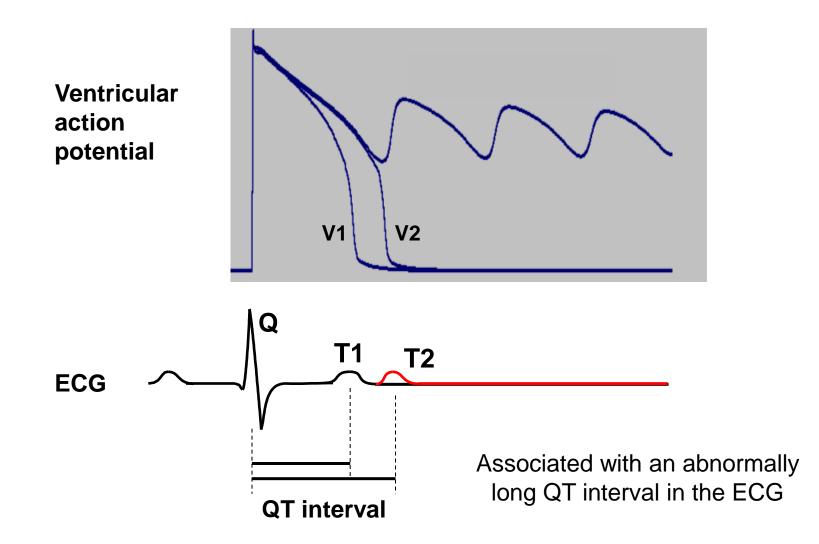

	EC Filter	TM Filters	CP Filter
	97	241 262 266	432 436 440
h α7	NSADERF	SG-EKISLGITVLLSLTVFMLLVAEIMPATSD	FRCQDESEAVCS
h ^α 2	NNADGEF	CG-EKITLCISVLLSLTVFLLLITEIIPSTSL	LRSEDADSSVKE <mark>D</mark> WK
h a3	NNAVGDF	CG-EKVTLCISVLLSLTVFLLVITETIPSTSL	MKAQNEAKEIQDDWK
h _ α4	NNADGDF	CG-EKITLCISVLLSLTVFLLLITEIIPSTSL	LKAEDTDFSVKEDWK
$h_{\alpha 5}$	DNADGRF	EG-EKICLCTSVLVSLTVFLLVIEEIIPSSSK	IMKENDVREVVEDWK
h_α6	NNAVGDF	CG-EKVTLCISVLLSLTVFLLVITETIPSTSL	MKSHNETKEVED
h_ α9	NKADDES	SG-EKVSLGVTILLAMTVFQLMVAEIMPA-SE	LKDHKATSSKGS <mark>E</mark> WK
h_ α1 0	NKADAQP	SG-EKVSLGVTVLLALTVFQLLLAESMPP-AE	FRSHRAAQRCHE
h_β2	NNADGMY	CG-EKMTLCISVLLALTVFLLLISKIVPPTSL	MRSEDDDQSVSE
h_β3	ENADGRF	EG-EKLSLSTSVLVSLTVFLLVIEEIIPSSSK	VKKEHFISQVVQDWK
h_β4	NNADGTY	CG-EKMTLCISVLLALTFFLLLISKIVPPTSL	MKNDDEDQSVVE <mark>D</mark> WK
h_ α1	NNADGDF	SG-EKMTLSISVLLSLTVFLLVIVELIPSTSS	MKSDQESNNAAAEWK
h_β1	NNNDGNF	AG-EKMGLSIFALLTLTVFLLLLADKVPETSL	LQEQEDHDALKE
h_ð	NNNDGSF	SG-EKTSVAISVLLAQSVFLLLISKRLPATSM	MRDQNNYNEEKDSWN
h_Y	NNVDGVF	AGGQKCTVAINVLLAQTVFLFLVAKKVPETSQ	RHQQSHFDNGNE <mark>E</mark> WF
h_ε	NNI DGQF	AGGQKCTVSINVLLAQTVFLFLIAQKIP	TRDQEATGEEVS DWV
Tca_a	NNA <mark>D</mark> GDF	SG-EKMTLSISVLLSLTVFLLVIVELIPSTSS	MKSDEESSNAAE <mark>E</mark> WK
Tca_β	NNNDGSF	AG-EKMSLSISALLAVTVFLLLLADKVPETSL	LESASEFDDLKKDWQ
Tca_d	NNNDGQY	SG-EKMSTAISVLLAQAVFLLLTSQRLPETAL	IKEKNAYDEEVGNWN
Tca_γ	NNVDGQF	AGGQKCTLSISVLLAQTIFLFLIAQKVPTSL	TKEQNDSGSENENWV
5HT3_A	EFV <mark>D</mark> -VG	SG-ERVSFKITLLLGYSVFLIIVSDTLPATAI	LEKRDEIREVARDWL
5HT3_B	EFVD-IE	CR-ARIVFKTSVLVGYTVFRVNMSNQVPRSVG	LQTQDQTDQQEAEWL
$GABA_{\alpha 1}$	NG <mark>KK</mark> SVA	SVPARTVFGVTTVLTMTTLSISARNSLPKVAY	EPKKTF
$GABA_\alpha 2$	NG <mark>KK</mark> SVA	SVPAR TVFGVTTVLTMTTLSISARNSLPKVAY	EAKKTF
$GABA_{\alpha3}$	NG <mark>KK</mark> SVA	SVPARTVFGVTTVLTMTTLSISARNSLPKVAY	KATYVQDSPTETKTY
$GABA_{\alpha5}$	NG <mark>KK</mark> SIA	SVPARTVFGVTTVLTMTTLSISARNSLPKVAY	ESKKTY
GABA_B2	ND <mark>KK</mark> SFV	ASAARVALGITTVLTMTTINTHLRETLPKIPY	RASQLKITIPDL
GABA_β3	ND <mark>KK</mark> SFV	ASAARVALGITTVLTMTTINTHLRETLPKIPY	RSSQLKIKIPDL
GABA_Y2	NS <mark>KK</mark> ADA	AVPARTSLGITTVLTMTTLSTIARKSLPKVSY	AWRHGRIH
GABA_Y3	NSKTAEA	ATPARTALGITTVLTMTTLSTIARKSLPRVSY	SWRKGRIH
Gly_a1	NE <mark>K</mark> GAHF	AAPARVGLGITTVLTMTTQSSGSRASLPKVSY	EMRKLFI
Gly_a2	NEKGANF	AAPARVALGITTVLTMTTQSSGSRASLPKVSY	AIKKKFV
Gly_a3	NEKGANF	AAPARVALGITTVLTMTTQSSGSRASLPKVSY	EMRKVFI
Gly_β	NESANF	ASAARVPLGIFSVLSLASECTTLAAELPKVSY	PAKPVIP
ELIC	NVVGSP	SFSERLQTSFTLMLTVVAYAFYTSNILPRLPY	
AChBP	SSTRPVQ		

Cardiac action potential

 I_{Kr} : rapidly activating K⁺current I_{Ks} : slowly activating K⁺current

Arthur J. Moss, Robert S. Kass (2005) JCI 115:2018

B


minK

A

KyLQT1

LQT syndrome

Can lead to fatal cardiac arrhythmia, usually precipitated by physical or emotional stress

LQT syndrome

Prolonged depolarization due to enhanced inward Na⁺ current? Slower repolarization due to reduced outward K⁺ current?

Disease Gene (historical name) Protein KCNQ1 (KVLQT1) LQT1 $I_{Ks}K^+$ channel α subunit KCNH2 (HERG) $I_{Kr}K^+$ channel α subunit LQT2 LQT3 SCN5A $I_{Na}Na^+$ channel α subunit LQT4 ANKB Ankyrin-B LQT5 KCNE1 (minK) $I_{Ks}K^+$ channel β subunit LQT6 KCNE2 (MiRP1) $I_{Kr}K^+$ channel β subunit KCNJ2 $I_{Kr2,1}K^+$ channel α subunit LQT7 CACNA1 Cav1.2 Calcium channel α subunit LQT8

(a selection of) CHANNELOPATHIES

K ⁺ Channel	Episodic ataxia type 1 Hyperinsulinemic hypoglycemia of infancy Oncogenic potential Benign familial neonatal convulsions Hereditary hearing loss Type II diabetes Antenatal variant of Bartter syndrome Andersen's syndrome Total colour blindness Periodic Paralysis Long QT syndrome (type 1,2,5) Myokymia	
Na⁺ Channel	Liddle's syndrome Hyperkaelemic Periodic Paralysis Paramyotonia congenita Congenital indifference to pain Generalized epilepsy with febrile seizures types 1 & 2 Long QT syndrome 3 Pseudohypoaldosteronism Potassium-aggravated myotonia Paroxysmal extreme pain disorder Severe myoclonic epilepsy of infancy Brugada syndrome Isolated cardiac conduction disease	
Ca ²⁺ Channel	Episodic ataxia type 2 Familial hemiplegic migraine Spinocerebellar ataxia type 6 Hypokaelemic periodic paralysis type I Malignant hyperthermia Generalized epilepsy Central core disease Congenital night blindness Expressed in advanced prostate cancer Stationary night blindness	
Cl ⁻ Channel	Myotonia congenita Dent's disease (proteinuria and hypercalciuria) Osteopetrosis Bartter syndrome Cystic Fibrosis	
Glycine receptor	Hyperekplexia (stiff baby syndrome) Startle disease	