Imperial College

Introduction The immune system

Peter Openshaw

Centre for Respiratory Infection p.openshaw@imperial.ac.uk

http://www.youtube.com/watch?v=yz4IFeqJPdU&feature=related http://www.aimediaserver.com/studiodaily/harvard/harvard.swf

Outline

- 1. What the immune system is for
- 2. Surface defences
- 3. How the immune system gets going
- 4. The B and T cell (acquired) responses
- 5. The most useful application of immunology

2

What is the immune system for?

To defend against:

🛛 Fungi

Viruses

Bacteria

Parasites

We are awash with microbes...

- Seawater has 10⁶ bacteria and 10⁷ viruses/ml
- Atmosphere contains ~1,000,000,000
 Tonnes of particles
- Indoor air has 400-900 bacteria/m³
- We inhale a potentially lethal pathogen every 7 seconds (10,000/d)
- Our bacteria outnumber our cells 10:1

Has to detect and react to <u>dangerous</u> things <u>not</u> the <u>foreign but safe</u>

http://www.youtube.com/watch?v=DZTkfizRJ_0

Outline

- 1. What the immune system is for
- 2. Surface defences
- 3. How the immune system gets going
- 4. The B and T cell (acquired) responses
- 5. The most useful application of immunology

Surface defences against infections

- Coughing
- Sneezing
- Mucus
- Cilia
- Rapid cell turnover
- The wall of death...

Death: the first and last barrier

Dead already

Soon to die 7

11

General Surface defences

Mechanical:

Epithelial tight junctions Skin waterproofed by fatty secretions Social conditioning (e.g. washing)

 Chemical: Fatty acids (skin) Enzymes: Iyozyme (saliva, sweat and tears), pepsin (gut) Low pH (stomach, sweat)

Antibacterial peptides (Paneth cells in intestine)

 Microbiological: Normal flora compete for nutrients/attachment sites

Production of antibacterial substances

Outline

- 1. What the immune system is for
- 2. Surface defences
- 3. How the immune system gets going
- 4. The B and T cell (acquired) responses
- 5. The most useful application of immunology

The sequential actions of the immune system

'first line' avoidance smell	'second line'	'specific /
avoidance smell	phagocytes	
smell		acquired'
tacto	opsonins some lumphocutes	T cells antibody
mucus	interferons	
physical barriers	acute phase proteins	
surface environment	Toll-like receptors	
		F.S.

The sequential actions of the immune system			
Pre-infection	Early infection	Late infection	
'first line' avoidance smell taste mucus physical barriers surface environment	'second line' phagocytes opsonins some lymphocytes interferons acute phase proteins Toll-like receptors	'specific / acquired' T cells antibody	
	specificity		
breadth			
	learning		

Interferons

TYPE I/III: $\alpha/\beta/\lambda$

- activates NK cells
- upregulates MHC, Mx proteins
- activates RNase L, PKR
- induces anti-viral state

TYPE II: IFN $\!\gamma$

- proinflammatory
- Th1 cytokine
- "immune interferon"

Phagocytes

•Cells that engulf invaders

•Antigen is destroyed in intracellular vesicles

Neutrophil chasing bacteria

From 16mm movie, 1950s by David Rogers, Vanderbilt University http://www.youtube.com/watch?v=I_xh-bkiv_c

DC and T cell migration

Natural Killer Cells

- •NK cells kill host cells that are:
 - Infected
 - Transformed
 - 'Stressed'
- Important in viral infections.
 - Viruses evade NK cell killing
 - NK deficiency leads to increased infections
- Important early source of cytokines
- •Shape adaptive immune responses

Natural Killer Cell Activation

REVIEWS IMMUNOLOGY

Outline

- 1. What the immune system is for
- 2. Surface defences
- 3. How the immune system gets going
- 4. The B and T cell (acquired) responses
- 5. The most useful application of immunology

The acquired immune system Two main types of lymphocyte

Hieronymus Fabricius (Girolamo Fabrici) 1537-1619 'The Father of Embryology

Bone marrow in mammals, Bursa of Fabricius (chickens)

Arise in the bone marrow but mature in the Thymus

B cells express/secrete antibody

•Each antibody recognises one specific shape/charge combination

•Each B cell expresses one unique antibody

ANTIBODY

Georges Kohler & Cesar Milstein. Nature (1975) 256: 495-7

Typical antibody response to vaccines:

http://www.microbiologybytes.com/iandi/3b.html

Antibody is very diverse

- Specialised classes of antibody
 10¹⁴ potential VDL combination
- 10¹⁴ potential VDJ combinations

The actions of antibody

Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)

 Donna L. Mallery^{a,1}, William A. McEwan^{a,1}, Susanna R. Bidgood^{a,1}, Greg J. Towers^b, Chris M. Johnson¹ and Leo C. James^{a,2}
 PNAS | November 16, 2010 | vol. 107 | no. 46 | 19985-19980

Hidden life of the cell: BBC2 October 2012 http://www.youtube.com/watch?v=v1MnNO4I9aU

Summary: antibodies

- 1. Made by B cells
- 2. Bind antigen
- 3. Cell membrane bound/secreted
- 4. Enhances phagocytes (opsonisation)
- 5. Recruits other toxic molecules/cells

T cells and their receptors (TcR)

Each T cell expresses one TcR

There are potentially 10¹⁸ different TcRs

Each TcR sees a specific combination of MHC and peptide at high affinity

Antigen processing and presentation Exogenous pathway Endogenous pathway Antigen resentation to CTLs Extracellula pathoger >% protei Phagos 01 5 th Cre oss-pr Antigen ntatio MHC TAP Endoplasn reticulum 00 Proteasome III MHC class II

Adapted from Dept of VMP, Washington State University

The Class I - Cytotoxic T cell system

MHC: major histocompatibility complex

Defences against bacteria

- Surface defences (mechanical and chemical)
- Antibody opsonisation
- **Complement** (alternative pathway) causing lysis/opsonisation
- Phagocytosis
- Release of inflammatory mediators and acute phase proteins (also opsonins) etc.
- Fever

The class II - Helper T cell system

Defences against viruses

- Surface defences
- Interferons
- Inflammatory mediators and acute phase proteins/opsonins *etc.*
- NK cells
- Antibody, complement, ADCC
- T cells

Mucosal defences

- 1. Mannan binding proteins
- 2. Antimicrobial peptides
- 3. Enzymes (e.g. lysozyme)
- 4. Mucosal lymphocytes
- 5. Secretory IgA
- 6. Special antigen sampling
 - Waldeyer's ring
 - Peyer's patches
 - Dendritic cell networks

Balance Tolerance vs. Attack

The spectrum of activation and regulation

Inflammation is tightly regulated

Outline

- 1. What the immune system is for
- 2. Surface defences
- 3. How the immune system gets going
- 4. The B and T cell (acquired) responses
- 5. The most useful application of immunology

Vaccines

the most cost-effective drugs

NHS choices

Do you recognise this disease?

40

Edward Jenner

Global eradication of smallpox

The 'dirty little secret' of the oneshot vaccine: Adjuvants

Immunity = antigen x adjuvant

Bruno Guy, Nat Rev Microbiol 5:505-517 (July 2007) doi:10.1038/nrmicro1681 Carter et al. BioDrugs 2008, 22:279

Characteristics of an eradicable infectious disease

- Simple (and cheap) to diagnose
- Genetically stable pathogen
- Accessible host species
- Eliminates persistent infection, <u>or</u> persistently infected host can't transmit
- Safe and effective vaccine

"Three million children die each year in poor countries from diseases that can be prevented by vaccination"

(World Bank, 1999)

Immunity

Defence against infection

Wealth, social stability