BSc Pharmacology and Translational Medicine

Module: Principles of Pharmacodynamics and Pharmacokinetics

Lecture: Application of Metabonomics to Toxicology & Pharmacology

Date: Friday 2nd November 2012

Toby Athersuch

Application of Metabonomics

Learning Objectives

By the end of the lecture and the associated learning activities the student should:

• Be able to give examples of the application of metabonomics in toxicology and other areas.

Lecture Outline

- Background to NMR-based metabolic profiling in toxicology & pharmacology
- Toxicological application example: COMET
- Summary

Background to Metabolic Profiling in Toxicology & Pharmacology

Metabolic Profiling (Metabonomics / Metabolomics) – Systems Pharmacology

- Typically a non-targeted approach ('agnostic')
- Unique metabolic 'fingerprints'
- Mechanistic insight / predictive ability pharmacometabonomics
- Systems response genetic / environmental closest to phenotype

Background

Metabolic Profiles Reflect Target Organ

Partial 600 MHz ¹H NMR spectra of rat urine. Indicates organ specificity of metabolic fingerprint

Background

Metabolic Profiles Reflect Target Organ

Background

Metabolic Profiling as a "Functional Tool"

IH NMR spectrum recorded at 600 MHz. Rat urine (abnormal), indicating regions reflecting selected biomarker regions/windows

Application of Metabonomics

Toxicological Applications: COMET 1 / COMET 2 Projects

Consortium on Metabonomics in Toxicology (COMET)

- Research consortium comprised of 5 pharmaceutical companies, work steered by Imperial College over 3 years
- Pfizer Global R&D (Pharmacia Corporation)
 - Eli Lilly & Co Bristol-Myers Squibb
 - Novo Nordisk A/S F. Hoffmann-la Roche AG
- Generation of a comprehensive database of NMR spectra of rodent biofluids after treatment with various toxicants (147 in total)
- Evaluation of chemometric models
- Predictive screening methodologies and development of novel biomarkers and methods for identifying them
- Now embarked on COMET-2 mechanism studies

The <u>Consortium</u> for <u>Metabonomics</u> <u>Toxicology</u> – COMET 1

- Academia (Imperial) and pharmaceutical companies
- 147 treatments including model toxins and dietary interventions
- 7 day single (low/high) and multi-dose toxicology studies in the rat and mouse
- Lindon et al., Pharmacogenomics, 2005, 6, 691
- Expert system developed predictive models

Treatment

Sham surgery, partial hepatectomy, unilateral nephrectomy, phenobarbital, probenecid, pregnenolone- 16α -carbonitrile, choline + methionine deficiency, insulin, food restriction, water deprivation, pentenoic acid, 2,4 dinitrophenol, acivicin, maleic acid + trichloroethylene, rosiglitazone (chron), rosiglitazone (acute), acetazoleamide, furosemide, carboplatin, ammonium chloride, methotrexate, sodium bicarbonate

Dexamethasone, streptozotocin, caerulein, 1-cyano-2-hydroxy-3-butene, L-arginine

Gadolinium chloride, lipopolysaccharide, galactosamine, clofibrate, clofibrate (duplicate), diethylhexylphthalate, sodium valproate, bromobenzene, methapyrilene, 1-fluoropentane, azathioprine, lithocholic acid, retinyl palmitate, 4-amino-2, 6-dichlorophenol, cyproterone, ANIT, allyl alcohol, BHT, chlorpromazine, ethionine, dimethylformamide, *N*-methyl formamide, FeSO₄, allyl formate, trichloroethylene, monocrotaline, DMN, lead acetate, buthinionine sulphoxide, aflatoxin, carbon tetrachloride, WY14,643, dichlorobenzene, phalloidin, WY14,643 - multidose, paraquat, ketoconazole, microcystin-LR, acetaminophen (acute), acetaminophen (chronic), dichloroethylene, rotenone, indomethacin, methylene dianiline, phenyl isothiocyanate, 1,2,3,4,5,6-hexa-chlorocyclohexane, phenyl diisothiocyanate

Cisplatin, puromycin, gentamycin, folic acid, cisplatin, puromycin, *N*-phenylanthranilic acid, Dlimonene, 2-chloroethanamine, adriamycin, mercury chloride, hexachlorobutadiene, vancomycin, maleic acid, aurothiomalate, 2-bromoethanamine, cephaloridine, ethylene glycol, para-aminophenol, 2-bromophenol, 3,5-dichloroaniline-HCI, atractyloside, *N*-dichlorophenyl succinimide

Cadmium chloride, carbendazim, ethane-(dimethane sulfonate), 1,3-dinitrobenzene, cadmium chloride, methoxyacetic acid, di-n-pentyl phthalate

lfosfamide

Phloracetophenone, chloroform, azaserine, amphotericin B, thioacetamide, cyclosporin A, potassium dichromate, mitomycin-C, S-(1,2-dichlorovinyl)-L-cysteine Hydrazine (7 studies), hydrazine (in Wistar rats)

Metabolic Trajectories

The <u>Consortium for Metabonomics</u> <u>Toxicology</u> – COMET 1

Testing Analytical and Biological Variation

The Consortium for Metabonomics Toxicology – COMET 1

Modeling Normality

The Consortium for Metabonomics Toxicology – COMET 1

PCA of 5,000 600 MHz urine ¹H NMR spectra from control Sprague Dawley rats

The <u>Consortium for Metabonomics</u> <u>Toxicology</u> – COMET 1

- Used ¹H NMR of rodent biofluids and tissue to derive an expert system for target organ toxicity
- 147 treatments including model compounds and dietary intervention
- Models of metabolic change over time (onset, progression, recovery)

Heat map - key: black = control like, white = most abnormal

74% of studies correctly predicted to a single organ of effect correctly (liver or kidney), 20% are predicted to more than one organ of toxicity, 6% are predicted incorrectly but the classifications can be explained (J.C. Lindon *et al.* The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. *Pharmacogenomics* 6, 691, (2005)

The Consortium for Metabonomics Toxicology – COMET 1

- Used ¹H NMR of rodent biofluids and tissue to derive an expert system for target organ toxicity
- 147 treatments including model compounds and dietary intervention
- Block 1 Hydrazine (replicate studies)
- Block 2 Paracetamol
- **Block 3** endocrine toxins (models for diabetes, increased urinary glucose)
- **Block 4** tubular renal toxins (cisplatin, HgCl₂)
- Block 5 only 2 papillary toxins (BEA and CEA)

Clustering compound effects by similarity of urine profile response

Nutritional / Exposure Biomarkers

Biochemical indicators of nutrient ingestion / absorption A food intervention study to find food biomarkers (of exposure/consumption) *via* metabolic profiling

8 volunteers (healthy, 18-45, non-smokers, BMI 18-25, no medication use) Standardised breakfast, lunch and dinner according to diet group Urine collections 4/day

Elucidation of potential food biomarkers from metabolic profiles with pattern recognition

Focus on urinary composition with fruit challenge

Pattern recognition indicates clearly regions of the spectrum that discriminate between the challenge groups

Visualisation of the model coefficients on a spectral plot is useful for spectroscopists for assignment

Biomarker elucidation by ¹H NMR spectroscopy

Principles of Pharmacodynamics and Pharmacokinetics | Application of Metabonomics | 20

Molecular Epidemiology - The INTERMAP Population Study

Investigating the effects of nutrition on adverse population blood pressure levels *via* metabolic profiling

Study Design Urine samples 2 x 24 hr Collected 3-6 weeks apart 17 centres including Peoples Republic of China (PRC), Japan, US and UK Total of 4,680 people ~ 10,000 samples including quality control split samples 4 visits were made by each person

¹H NMR spectra were acquired for each sample

<u>Measurements:</u> Blood pressure - seated (2 x for 4 visits) Height and weight (2 visits) Daily alcohol over previous 7 days questionnaire (2 visits) Dietary intake (including vitamin/mineral supplements) Recorded using 24 hr recall method (4 visits) Demographic and medical history questionnaire (1 visit)

Molecular Epidemiology - The INTERMAP Population Study

Metabolites responsible for discriminating populations and diet, also showed significant associations to blood pressure in individuals

Holmes E et al. 2008. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453 396-400.

Molecular Epidemiology - The INTERMAP Population Study

Metabolites responsible for discriminating populations and diet, also showed significant associations to blood pressure in individuals

Differences NOT just genetic background

Table 1 | Estimated mean differences in systolic and diastolic BP

Urinary metabolite	A*				В†			
	Not adjusted for BMI‡		Adjusted for BMI‡		Not adjusted for BMI‡		Adjusted for BMI‡	
	Systolic blood pressure (mm Hg)							
Alanine	2.69	(6.06)	0.40	(0.92)	2.66	(5.54)	1.13	(2.43)
Formate	-1.19	(-2.62)	-1.42	(-3.29)	-1.94	(-3.92)	-1.04	(-2.20)
Hippurate	-2.10	(-4.85)	-1.63	(-3.95)	-1.72	(-3.70)	-0.82	(-1.83)
<i>N</i> -methylnicotinate	-0.09	(-0.21)	0.20	(0.49)	0.00	(0.00)	0.65	(1.53)
	Diastolic blood pressure (mm Hg)							
Alanine	1.57	(5.17)	0.17	(0.55)	1.58	(4.77)	0.61	(1.90)
Formate	-0.90	(-2.96)	-1.02	(-3.49)	-1.41	(-4.22)	-0.86	(-2.65)
Hippurate	-0.98	(-3.33)	-0.71	(-2.50)	-0.77	(-2.42)	-0.23	(-0.73)
<i>N</i> -methylnicotinate	-0.07	(-0.25)	0.09	(0.32)	-0.01	(-0.03)	0.37	(1.27)

Systolic and diastolic blood pressure differences per +2 s.d. difference in each of four quantified urinary metabolites (mean of two 24-h urine values). Numbers in parentheses are Z scores, that is, regression coefficient divided by standard error (Z-score \geq 1.96, P < 0.05; \geq 2.58, P < 0.01; \geq 3.29, P < 0.001; \geq 3.89, P < 0.0001). 2 s.d. difference for alanine = 0.34 mmol per 24 h (n = 4,232); formate = 0.29 mmol per 24 h (n = 4,147); hippurate = 3.55 mmol per 24 h (n = 4,184); *N*-methylnicotinate = 0.41 mmol per 24 h (n = 4,081) (chemical shifts used for quantification: alanine, δ 1.48; formate, δ 8.45; hippurate, δ 7.85 and *N*-methylnicotinate, δ 4.44). Regression coefficients for individuals are pooled across countries (Methods); there is no evidence for cross-country heterogeneity in size of coefficients.

* A: Adjusted for age, sex, sample, special diet, supplement use, cardiovascular disease or diabetes mellitus diagnosis, physical activity (h per 24 h moderate or heavy activity), family history of high blood pressure.

 \dagger B: A + 7-day alcohol (g per 24 h) + urinary Na⁺ (mmol per 24 h) + urinary K⁺ excretion (mmol per 24 h). \ddagger Body mass index (kg m⁻²).

Holmes E et al. 2008. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453 396-400.

Typical 1H NMR spectra of urine from participants: (A) no analgesic intake; (B) after ingestion of acetaminophen; (C) expansion on acetaminophen region at δ 2.16; (D) after ingestion of ibuprofen; (E) showing the characteristic of the anomeric proton signal of the ibuprofen glucuronide rings. For a key to the identity of ibuprofen metabolites, refer to Figures 1 and 6.

Recent Developments and Future Perspectives

A National Phenome Centre for the UK

The London 2012 Olympic and Paralympic Games required a large biospecimen testing facility. As part of the legacy, this facility will be repurposed for metabolic profiling of large samples set, principally from epidemiological cohorts.

Application of Metabonomics

References & Further Reading

Shipkova P; Vassallo JD; Aranibar N; Hnatyshyn S; Zhang H; Clayton TA; Cantor GH; Sanders M; et al. Ioannides C (ed). (Feb 2011). Urinary metabolites of 2-bromoethanamine identified by stable isotope labelling: evidence for carbamoylation and glutathione conjugation. Xenobiotica. 41:144-154.

 Coen M. (30 Dec 2010). A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology. 278:326-340

• Coen M; Want EJ; Clayton TA; Rhode CM; Hong YS; Keun HC; Cantor GH; Metz AL; et al. (Nov 2009). Mechanistic aspects and novel biomarkers of responder and non-responder phenotypes in galactosamine-induced hepatitis. J Proteome Res. 8:5175-5187.

Coen M; Hong YS; Clayton TA; Rohde CM; Pearce JT; Reily MD; Robertson DG; Holmes E; et al. (Jul 2007).
The mechanism of galactosamine toxicity revisited; a metabonomic study. J Proteome Res. 6:2711-2719.

 Sands CJ; Coen M; Ebbels TM; Holmes E; Lindon JC; Nicholson JK. (15 Mar 2011). Data-driven approach for metabolite relationship recovery in biological 1H NMR data sets using iterative statistical total correlation spectroscopy. Anal Chem. 83:2075-2082.

 Sands CJ; Coen M; Maher AD; Ebbels TMD; Holmes E; Lindon JC; Nicholson JK. (1 Aug 2009). Statistical Total Correlation Spectroscopy Editing of H-1 NMR Spectra of Biofluids: Application to Drug Metabolite Profile Identification and Enhanced Information Recovery. ANAL CHEM. 81:6458-6466.

 Want EJ; Coen M; Masson P; Keun HC; Pearce JT; Reily MD; Robertson DG; Rohde CM; et al. (15 Jun 2010). Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids: application to experimental toxicology studies. Anal Chem. 82:5282-5289.

 Nicholson, J. K., et al. (2004). The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22, 1268-1274