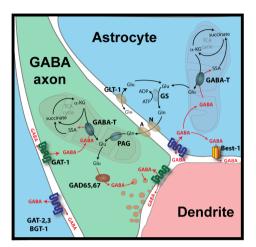

GABA_A receptor pharmacology: Alcohol, Benzodiazepines..and the rest

Catriona Houston c.houston@imperial.ac.uk

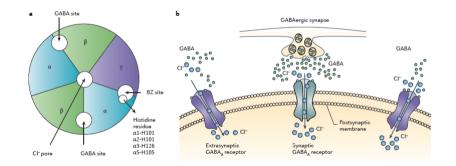
GABA is a simple amino acid

Electroneutral zwitterion (isoelectric point, 7.3)

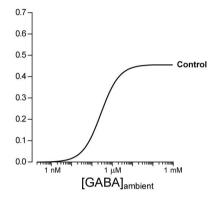
 H_2N OH

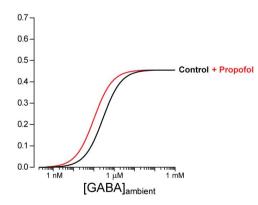

-Aminobutyric acid in brain. EUGENE ROBERTS AND SAM FRANKEL (introduced by C. CAR-RUTHERS). Division of Cancer Research, Wash-ington Univ., St. Louis, Mo. Relatively large quantities of an unidentified

"enabling it, in "stealth" fashion, to escape the charged minefields encountered in passage through the dense extracellular environment lying between presynaptic sites of release and postsynaptic sites of action... Try as one might, one cannot come up with a better choice for the job."

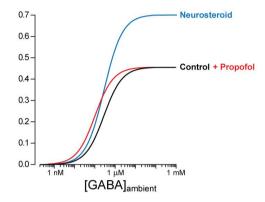

Eugene Roberts

GABA is synthesized at nerve terminals where it is released into the synaptic cleft


Where it binds the postsynaptic GABA_A receptor


Enhancement of $GABA_A$ receptor function or an increase in the release of GABA can lead to sedation, anxiolysis and anaesthesia.

- Allosteric modulators Benzodiazepines and neurosteroids
- Direct action and action on release Alcohol
- Changes in GABA level (an action on transporters GABApentin, tiagabine)

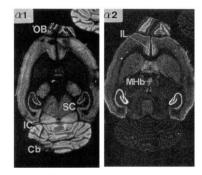

All of these drugs have potent actions on $\mathsf{GABA}_\mathsf{A}\mathsf{Rs}$

However, this is not the case for all allosteric modulators

Many clinically relevant drugs alter sleep due to their actions on GABA-A receptors

Benzodiazepines

- Alprazolam (Xanax, Xanor, Kalma, Tafil, Alprox, Frontal)
- Bromazepam (Bromam, Compendium, Creosedin, Calmepam, Durazanil, Lectopam, Lexaurin, Lexilium, Lexonil, Lexotan, Lexotanil, Normoc,
- pam. Somalium)
- Chlordiazepoxide (Librium, Tropium, Risolid, Klopoxid)
- Cinolazepam (Gerodorm)
- Clobazam (Frisium)
- Clonazepam (Klonopin, Klonapin, Rivotril, Rivatril)
- Clorazepate (Tranxene)
- Cloxazolam (Olcadil, Sepazon)
- Diazepam (Valium, Apzepam, Stesolid, Vival, Apozepam, Hexalid, Valaxona, Ducene, Antenex)
- Estazolam (ProSom)
- Flurazepam (Dalmane, Dalmadorm)
- Flunitrazepam (Rohypnol, Fluscand, Flunipam, Hynodorm, Ronal, Rohydorm)
- Halazepam (Paxipam)
- Ketazolam (Anseren, Ansieten, Ansietil, Marcen, Sedatival, Sedotime, Solatran, Unakalm)
- Loprazolam (Dormonoct)
- Lorazepam (Ativan, Temesta, Lorabenz)
- Lormetazepam (Loramet, Nictamid, Pronoctan, Ergocalm, Dilamet, Sedaben, Stilaze, Nocton, Noctamid, Noctamide, Loretam, Minias Methyllorazepam)
- Meprobamate (Meprospan, Miltown, Equanil)
- Midazolam (Versed, Hypnovel, Dormicum)
- Nitrazepam (Mogadon, Alodorm Pacisyn, Dumolid)
- Nordazepam (Calmday, Stilny, Madar, Vegesan, Desoxydemoxepam, Nordiazepam, Desmethyldiazepam) - Oxazepam (Serax, Seresta, Serenid, Sobril, Oxascand, Alopam, Oxabenz, Oxapax, Murelax, Alepam)
- Quazepam (Doral)
- Temazepam (Restoril, Normison, Euhypnos, Temaze, Temtabs, Remestan, Tenox, Norkotral)
- Triazolam (Halcion, Rilamir)

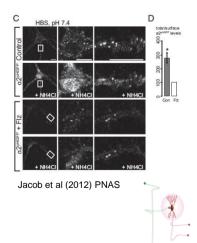


GABA_A receptor subtypes

Multiple subunit isoforms form distinct subtypes of GABA_A receptor.


Different subtypes are targeted to different brain regions.

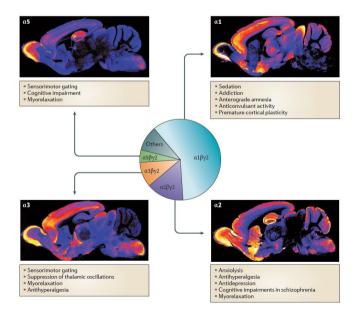
The $\alpha 2$ subunit is linked to anxiety and a genetic predisposition to alcohol dependence. (Enoch et al 2006 American Journal of medical genetics 141B; 599)


Wisden et al 1992 J Nsci 12; 1040

BDZs are non-selective

BDZs are non-selective – side effects and tolerance

- The anxiolytic effects occur at lower doses than sedative but sedation can still occur. Day-time treatment of anxiety comes with some sedation.
- BDZs have addictive properties. Longterm use can lead to tolerance physical dependence and addiction and as such there use is limited to short periods of time.
- Tolerance and physical dependence leads to withdrawal symptoms on removal – anxiety and insomnia (similar to alcohol withdrawal).


Different GABA_A receptor subtypes mediate different physiological effects

- Role of different α subunit containing GABA_A receptors revealed using transgenic mice (Low et al. (2000) Science; Rudolph and Knoflach (2011) Nat Rev Nsci).
- x↓ α1 sedative, anterograde amnesic actions and anticonvulsant actions of Diazepam and (importantly) addictive properties.

 $\alpha 2$ – anxiolytic actions and myorelaxant

 $\alpha 5$ – linked to development of tolerance and sedation – learning and memory.

- **Zolpidem** α 1 selective Used for sedation
- Different subtypes have been shown to mediate different physiological effects of drugs like anaesthetics. (Reynolds et al 2003 J Nsci 23; 8608)

Rudolph and Knoflach (2011) Nat Rev Nsci 10: 685

Development of α2 selective BDZs may allow anxiolysis without sedation and addiction

Table 1 Subtype selective compounds for GABA _A receptors					
Compound	Receptor subtype	Binding/functional selectivity	Indication	Development status	
L-838417	Partial agonist at α2, α3, α5	Functional	Anxiety disorders	Preclinical	
TPA023 (MK-0777)	Partial agonist at a2, a3	Functional	Anxiety disorders, schizophrenia	Phase II	
TPA023B	Partial agonist at a2, a3	Functional	Anxiety disorders, schizophrenia	Phase I	
TPA123	Partial agonist at α1, α2, α3, α5	Functional	Anxiety disorders	On hold	
MRK-409 (MK-0343)	Partial agonist at α2, α3	Functional	Anxiety disorders	Phase I, halted	
TP003	Agonist at α3	Functional	Anxiety disorders	On hold	
Ocinaplon (DOV-273547)	Partial agonist at α2, α3, α5. Full agonist at α1	Functional	Anxiety disorders	On hold	
NS11394	Agonist at α5. Partial agonist at α3, α5	Functional	Anxiety disorders	Preclinical	
MRK-016	Full inverse agonist at α5	Functional	Cognitive impairment	Phase I, halted	
α5IA	Partial inverse agonist at α5	Functional	Cognitive impairment	Phase I, halted	
RO4938581	Full inverse agonist at α5	17–40-fold binding selectivity for $\alpha 5$	Cognitive impairment	Preclinical	
L-655708 (FG8094)	Very weak inverse agonist at α5	30–70-fold binding selectivity for $\alpha 5$	Cognitive impairment	Preclinical	
SH-053-2'F-R-CH3	Full agonist at α5. Partial agonist at α1, α2, α3	8–10-fold binding selectivity for $\alpha 5$	Schizophrenia?	Preclinical	
Gaboxadol	Supra-maximal agonist at α4β3δ	>Tenfold binding selectivity for $\alpha 4$	Insomnia	Phase III, halted	

Worries about alcohol

By Daniel Martin

Alcohol 'is to blame for most weekend casualty admissions'

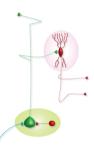
By Daily Mail Reporter

Rising alcohol abuse among middle-class pensioners as hospital admissions soar

Drinking and obesity fuel surge in liver disease among middle-age Britons

Sites of Alcohol action in the brain

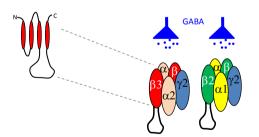
- Weak interactions with a large number of targets (high concentrations 10-100mM)



-Ligand-gated receptors, excitatory and inhibitory $% \left(NMDA\right)$ (NMDA and GABA $_{A_{\text{c}}}$ nAchRs)

- Changes to GABA release
- Voltage-gated ion channels (K+)

- Enzymes and intracellular signalling pathways. alcohol dehydrogenase, adenylyl cyclase (enhancement of cAMP production)


- Stimulation of neurosteroid production

Results in overall shift in balance between inhibitory and excitatory drive within the brain such that inhibition dominates.

Harris et al 2008 Sci signal.15; 1-5

Alcohol and the GABA_A receptor

GABA and the GABA_A receptor have been implicated in mediating both the acute and chronic effects of alcohol consumption.

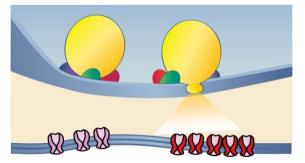
- Alcohol consumption has similar physiological effects to known GABA_A receptor modulators (BDZs and barbiturates)

- Anxiolysis, sedation, hypnosis, anti-convulsant, motor and cognitive impairment.

- Cross-tolerance of BDZs and barbiturates (also used to alleviate the symptoms of withdrawal).

Alcohol and inhibitory transmission

GABAergic transmission :

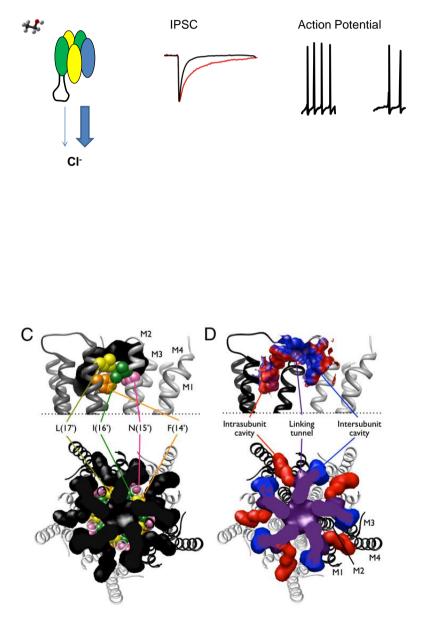

- Enhanced during intoxication
- Altered by chronic consumption
- Therapeutic target for withdrawal and abstinence
- Risk factor: polymorphisms in GABA_A receptor genes linked to alcoholism

Alcohol enhancement of GABA_A receptors

Mechanism is controversial

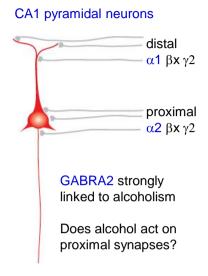
Direct action

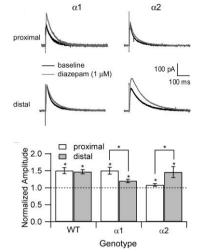
Increased GABA release



Indirect action e.g. Neurosteroid production

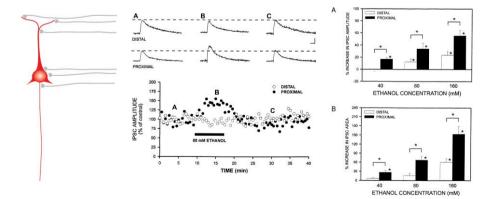
Alcohol and inhibitory transmission - direct action

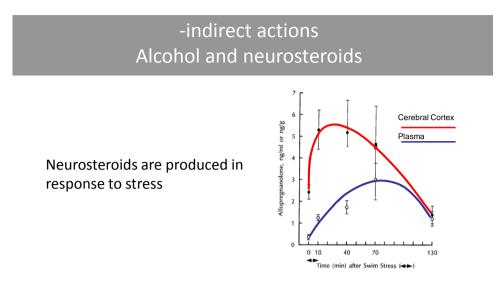

Direct binding to the GABA_A receptor – enhancement of function.


Proposed site of direct binding on the alpha subunit (TM2-3) – lining of channel pore.

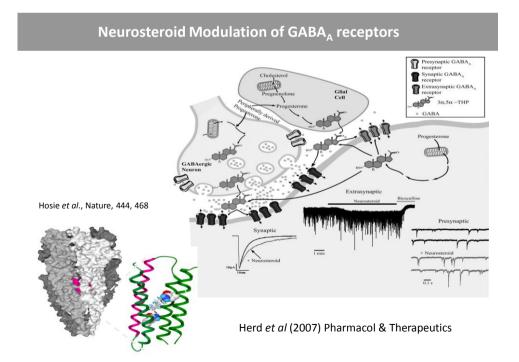
Jung et al 2005 JBC 280; 308-16 Howard et al 2011 PNAS 108; 12149

Subcellular targeting of GABA_AR isoforms

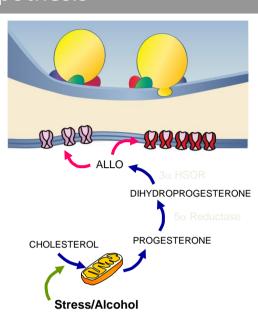



Prenosil, G. A. et al. J Neurophysiol 96: 846-857 2006

Isolating alcohol sensitive synapses


In hippocampal pyramidal cells, proximal synapses show greater alcohol sensitivity

Weiner, J. L. et al. J Neurophysiol 77: 1306-1312 1997

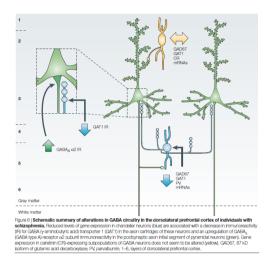


Alcohol consumption elicits neurosteroid production

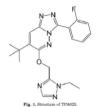
Hypothesis

- Stress actives ALLO synthesis in pyramidal neurons
- ALLO enters membrane binds to and enhances GABA_AR
- Alcohol hijacks this system

Alcohol, genetics and neurosteroids


In Humans

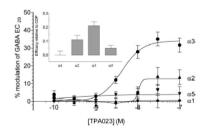
GABA_A alpha2 alleles alter the subjective effects of alcohol


As did ingestion of finasteride a drug that blocks the synthesis of neurosteroids.

Pierucci-Lagha et al 2005 Neuropsychopharmacology 30; 1193

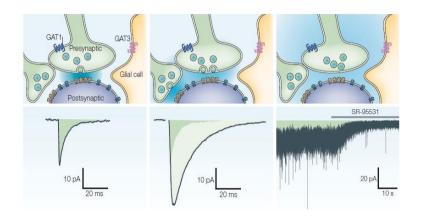
$\alpha 2/3$ selective agonists and schizophrenia

Schizophrenia is associated with increased excitability in VTA dopaminergic neurons (which express α 3). More on this later....

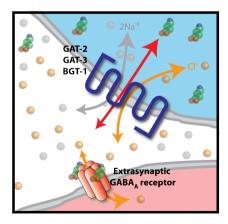


TPA023 [7-(1,1-Dimethylethyl)-6-(2-ethyl-2*H*-1,2,4-triazol-3ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-*b*]pyridazine], an Agonist Selective for α 2- and α 3-Containing GABA_A Receptors, Is a Nonsedating Anxiolytic in Rodents and Primates

John R. Atack, Keith A. Wafford, Spencer J. Tye, Susan M. Cook, Bindi Sohal, Andrew Pike, Cyrille Sur, David Meililo, Linda Bristow, Fran Bromidge, Ian Ragan, Julie Kerby, Les Street, Robert Carling, José L. Castro, Paul Whiting, Gerard R. Dawson, and Ruth M. McKernan


Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex, United Kinodom

Small clinical trial with TPA023 (α 2/3) partial agonist showed some improvement in cognitive function in schizophrenic patients.


EEG showed increased γ oscillations controlled by GABAergic interneurons and thought to underlie cognitive symptoms of schizophrenia.

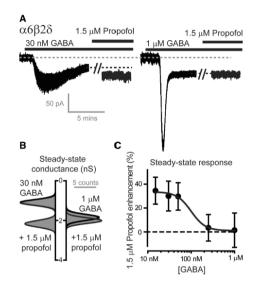
Extrasynaptic GABA_A receptors mediate tonic inhibition

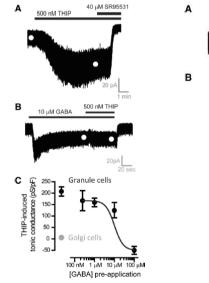
- + Phasic Inhibition: Mediated by synaptic $\alpha\beta\gamma$ -containing receptors
- Tonic Inhibition: Mediated by extrasynaptic $\alpha\beta\delta$ -containing receptors

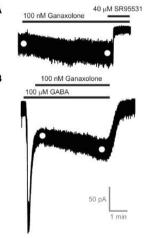
GABA transporters are principally involved in setting the ambient GABA concentration

Drug (Trade Names)	Mechanism of Action	Current Drug Indications
Gabapentin (Fanatrex, Gabarone, Gralise, Neurontin)	Originally thought to be a GABA mimetic, but mechanism of action is now unclear. Possible enhancement of GABA synthesis could explain why ambient GABA levels in the brain are raised (Maneuf et al., 2003).	Partial-onset seizures in adults and the elderly (Beghi, 2010); alcohol withdrawal as a combination therapy (Anton et al., 2011); sleep disorders (Ehrenberg, 2000).
figabatrin Sabril)	Irreversible block of GABA transaminase to interfere with GABA cetabolism and, therefore, raise ambient GABA levels.	Refractory complex partial seizures and infantile spasms (Tolman and Faulkner, 2009). Not favored due to visual field loss in some adults and children (Chiron and Dulac, 2011).
liagabine (<i>Gabitril</i>)	Blockade of GABA transporters on nerve terminals (predominantly GAT-1) leads to raised ambient GABA levels.	Partial seizures; generalized anxiety disorders/panic disorders (Pollack et al., 2005).
Pregabalin (<i>Lyrica</i>)	Enhances the activity of glutamic acid decarboxylase (GAD) leading to increased GABA synthesis and, therefore, raised ambient GABA levels.	Partial seizures with or without secondary generalization (Tassone et al., 2007); neuropathic pain in diabetese, postherpetic neuralgia, and fibromyalgia (Tassone et al., 2007); generalized anxiety disorder (Tassone et al., 2007);
Gaboxadol	Selective orthosteric agonist at δ -GABA _A Rs leading to specific enhancement of the tonic conductance.	Sleep enhancer, but withdrawn from Phase III clinical trials due to poor risk-to-benefit ratio (Saul, 2007).
655,708	High-affinity negative allosteric modulator of α5-GABA _A Rs that will reduce tonic conductances.	Cognitive enhancer but not thought to be suitable for human use due to anxiogenic properties (Navarro et al., 2002).
Ganaxolone	Positive allosteric modulator of most GABA _R Rs with greater potency at õ-GABA _A Rs leading to selective enhancement of the tonic conductance.	Catemenial epilepsy (Biagini et al., 2010).
Alphaxalone (<i>Althesin, Saffan</i>)	Positive allosteric modulator of most GABA _v Rs with greater potency at δ-GABA _v Rs leading to selective enhancement of the tonic conductance.	Anesthetic (Winter et al., 2003) and sedative in long-term intensive care patients (Stewart et al., 1983). Was withdrawn from clinical practice due to complications with the vehicle. Cremophor EL Rebranded as Saffar and widely used as an anesthetic in veterinary surgery.
Propofol (<i>Diprivan</i>)	Positive allosteric modulator of most GABA _A Rs including α5 and δ-GABA _A Rs leading to enhanced tonic conductance.	Widely used as an intravenous anesthetic.

Cellular/Molecular

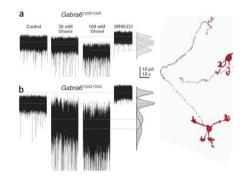

Are Extrasynaptic ${\rm GABA}_{\rm A}$ Receptors Important Targets for Sedative/Hypnotic Drugs?


Catriona M. Houston,* Thomas P. McGee,* Georgina MacKenzie, Kevin Troyano-Cuturi, Pablo Mateos Rodriguez, Elena Kutsarova, Efthymia Diamanti, Alastair M. Hosie,* Nicholas P. Franks, and Stephen G. Brickley Biophysics Section, Division of Cell and Molecular Biology, Imperial College, South Kensington, London SW7 2AZ, United Kingdom

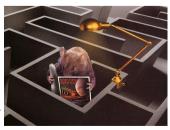

The concentration of ambient GABA may influence drug modulation.

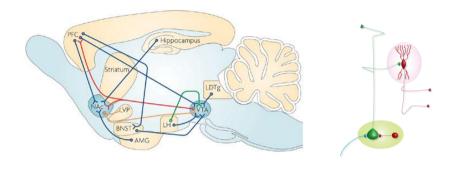
- THIP and GABA compete for the same binding site. THIP has a lower affinity and so cannot displace GABA if already bound.

- Propofol is an allosteric modulator that increases the apparent affinity of GABA



Extrasynaptic GABA_A receptors as a target for ethanol

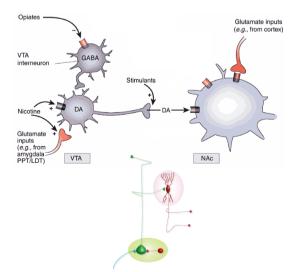

Naturally occurring polymorphism in rats confers increased EtOH induced motor impairment.


Hanchar et al 2005 Nature Nsci 8; 339

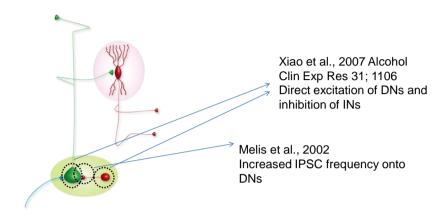
Cognitive enhancement through α 5?

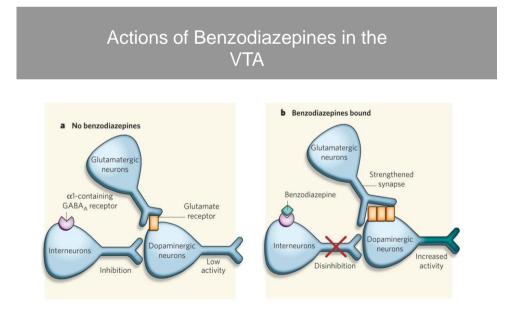
- Classical BDZs impair learning and memory. Negative allosteric modulators (inverse agonists) at the BDZ site have been proposed as possible memory enhancers.
- Non-selective inverse agonists have multiple side-effects (anxiogenesis. convulsant activity).
- In the hippocampus a region important for learning and memory there is a high level of α5 expression mediating both phasic and tonic inhibition.
- \times α 5 selective compounds are in development.
- x α5IA was found to reverse memory deficits induced by alcohol consumption with no sign of anxiogenesis.
- Possible use in Alzheimer's but...renal toxicity.

Reward: the mesolimbic dopamine system



Nature Reviews | Neuroscience


Dopamine neurons from Ventral Tegmental Area project to: Nucleus Accumbens (NAc), pre- and orbito-frontal cortex (PFC, OFC)


Reward: the VTA-NAc

All addictive drugs increase dopamine levels in the Nucleus Accumbens (NAc) through an increase in activity of ventral tegmental area (VTA) dopaminergic neurons

Actions of EtOH in the VTA

Tan et al., 2010 Neural bases for addictive properties of benzodiazepines. Nature 463, 769-74

In summary...

- Understanding the physiological role of different GABA_A receptor subtypes in different regions of the brain is key to understanding pharmacology.
- The dream.... Subtype selective BDZs
- Maxiolysis without sedation or dependence
- ** A new class of hypnotics