

Juthathip Mongkolsapapya

Overview

o Background

- What is a virus?
- Properties of viruses
- o Immune responses
 - Innate responses
 - Adaptive responses

o Immune evasion/persistence

Overview

o Background

- What is a virus?
- Properties of viruses
- o Immune responses
 - Innate responses
 - Adaptive responses

o Immune evasion/persistence

• • What is a virus?

- o A "filterable" agent much smaller than bacteria
- o Infects cells and has an absolute requirement for cells
- A programme for self-replication and multiplication that has:
 - Gene expression; genome replication; virus assembly; virus release and transmission.
- o Classified according to genetic content and replication strategy Baltimore Classification

Baltimore classification: examples

Class	Nucleic Acid	Examples	Envelope	Genome size (kb)
I	dsDNA	Herpes virus Poxvirus Adenovirus Papillomavirus	Yes Yes No No	120 - 220 130 - 375 3.0 - 4.2 5.3 - 8.0
II	ssDNA	Adeno-associated virus	No	5.0
	dsRNA	Reovirus	No	18 - 31‡
IV	(+) ssRNA	Togavirus Poliovirus Foot-and-mouth disease virus Hepatitis A virus Hepatitis C virus	Yes No No No Yes	9.7 - 11.8 7.4 7.5 7.5 10.5
۷	(-) ssRNA	Influenza virus	Yes	12 - 15‡
VI	(reverse) RNA	HIV	Yes	9.7
VII	(reverse) DNA	Hepatitis B virus	Yes	3.1

www.web-books.com/mobio/free/Ch1E2.htm

Important Human Virus Diseases

o HIV

- o Hepatitis B virus (HBV)
- o Hepatitis C virus (HCV)
- o Human Papilloma virus (HPV)
- o Rotavirus
- o Measles
- o Respiratory Syncitial Virus (RSV)
- o Influenza A

Emerging and re-emerging Viruses

o Swine influenza

Properties of viruses I

o Cytopathic or non-cytopathic

- Cytopathic eg: Hep B
- Non-cytopathic eg: Rhinovirus

o Acute or Chronic

- Acute eg: Ebola Virus
- Chronic eg: Cytomegalovirus

Acute vs Chronic Viruses

Acute

Acute vs Chronic Viruses

Chronic

Acute vs Chronic Viruses

Overview

- o Background
 - What is a virus?
 - Properties of viruses
- o Immune responses
 - Innate responses
 - Adaptive responses

o Immune evasion/persistence

Kinetics of virus induced immunity

Production of IFN- α , IFN- β , TNF- α and IL-12

Innate and adaptive immunity I

o Innate immunity

To combat the <u>early</u> stage of infection

o Adaptive immunity

- Several days required to enable clonal expansion and differentiation of naïve lymphocytes into:
 - Effector T cells
 - Antibody secreting B cells

Innate and adaptive immunity II

Innate

- -Physical barrier
- -Complement
- -NK cells
- -Type I Interferons

Adaptive

- -CD4 / CD8 T cells
- –B cells
- -Cytokines
- -Chemokines

Innate immunity to viruses

o Complement o NK cells o Interferons

Complement - Major Roles

- o <u>opsonisation</u> of viruses for phagocytosis
- o direct killing of viruses
- o promotion of inflammation
- o chemotaxis neutrophils & leukocytes
- o processing immune complexes
- o Augment induction of specific antibodies

- 1. Induce resistance to viral replication in all cells such as induce OAS
- 2. Increase MHC Class I expression and antigen
- presentation in all cells
- 3. Activate NK cells to kill virus-infected cells
- 4. Activate Dendritic cells and macrophages
- 5. Induce chemokine production, such as CXCL-9,-10 and -11, to recruit lymphocytes

NK cells and viruses

Crucial link between innate and adaptive IR
Important in first five days of infection

- Cytokine secretion
- Differentiation of CD4⁺ T cells

• • NK cells and viruses

o Eliminate viral infected cells by:

- Cytolytic mechanisms
 - NK cell receptors
 - ADCC
- Non-cytolytic mechanisms
 - Chemokine secretion
 - Cytokine secretion
 - Effector cell recruitment

NK cell recognition of virus infected cell

NK cell recognition of virus infected cell

NK cell killing mechanisms – Cytolytic

NK cell killing mechanisms – Non-cytolytic

Adaptive immune response to viruses

o CD4⁺ T helper cells
o CD8⁺ T cytotoxic cells
o Regulatory T cells
o B cells

Functional cytokine signature Ag load

Functional Cytokine Signature Clinical Application

- o Transplantation: CMV and EBV-specific T cells
 - Correlation of specific T cell responses and reactivation of virus
- o Following treatments of patients with AIDS
 - Shift from solely IFN-gamma to multifunctional CD4 response
- o HCV and HBV viral infections
 - Multi-functional Hepatitis specific T cell response associated with lower levels of viraemia

Regulatory T cells (Tregs)

o Affect the magnitude and the outcome of viral infection

- Deleterious
- Beneficial

Deleterious Tregs

o HSV

 Animals depleted of Tregs prior to infection more effectively control the virus

o HCV and HIV

Tregs contribute to immune disfunction

Beneficial Tregs

o HSV

 Tregs limit the severity of tissue damage associated with an inflammatory reaction to viral infection.

o HIV

• Limit chronic immune activation that precedes immune collapse.

Viral Factors

o Accessibility to Ab

o Structural arrangement of accessibility site
 Host Factor
 o Frequency of germ-line encoded IgG V_H-V_L

region combinations with specificity for epitopes in the accessibility sites

B: Arrangement of Antigenic sites

C: Frequency of IgG combinations

High-affinity V regions frequently encoded in germline

Protective antibody response

High-affinity V regions rarely encoded in germline

• • • Memory NK cells

Overview

- o Background
 - What is a virus?
 - Properties of viruses
- o Immune responses
 - Innate responses
 - Adaptive responses

o Immune persistence/evasion

Viral Immune evasion and subversion

Strategies employed by viruses to overcome every arm of the immune response

Immune evasion/subversion strategies

- o Change viral genome
- o Inhibit Complement
- o Evade NK cells
- o Inhibit Interferons
- o Interfere with Ab responses
- o Interfere with T cells responses
- o Inhibit and modulate CK and CC

Immune evasion/subversion strategies

- o Change viral genome
- Inhibit ComplementEvade NK cells
- Inhibit Interferons
 Interfere with Ab responses
- o Interfere with T cells responses

o Inhibit and modulate CK and CC

Modulation of NK cell function

Interference with Antibody response

Interference with recognition by B cells

Interference with normal T-cell-B-cell interaction

Cytokine mimicry

Consequences of the failure to eliminate virus

- o Latent eg: Herpes Simplex Virus
 - Virus not normally detected.
 - Quiescent infection, episodes of reactivation
- o Persistant eg: Epstein Barr Virus
 - Infection persists and causes prolonged disease which is slow to develop
- o Oncogenic eg: Rous Sarcoma Virus
 - Part of the viral genome is incorporated into the host genome, causing malignant transformation.

• • Summary

- o Wide variety of viruses
- o Wide variety of Immune responses to viruses
- o Innate responses
- o Adaptive responses
- o Evasion/subversion

References

- Viral immune evasion: a masterpiece of evolution. Immunogenetics (2002) 54: 527-542
- Anti-viral Ab responses. Nature Reviews Immunology (2006) 6: 231-243
- NK cells in HIV infection. Nature Reviews Immunology (2005) 5: 835-843
- Subversion of immune responses by Hepatitis C virus. Current Opinion in Immunology. (2003) 15: 443-449
- Innate or adaptive immunity? The example of natural killer cells. Science (2011) 331:44-49
- o Natural killer cell memory. Nature Immunology (2011) 12:500-508