Imperial College London

BSc Immunity and Infection Module 1

Stem Cells

& Regenerative Medicine

Wei Cui

Stem Cells Differentiation Laboratory IRDB, Faculty of Medicine

Regenerative Medicine

Includes;

- Tissue engineering
- Cellular therapy
- Regeneration

EU Committee meeting Sept 2007: Repair of functionally compromised cells, tissues or organs by biological substitutes or stimulation of endogenous processes going beyond standard therapies.

- Primary Cells

- Stem Cells

Somatic Stem Cells

Embryonic Stem Cells

Sources: Primary cells

Advantage

- Autologous

Disadvantages

- Limited availability
- Low yield
- Poor growth rate

- Primary Cells

- Stem Cells

Somatic Stem Cells

Embryonic Stem Cells

Stem Cells

Self-renewal: A cell divides to generate daughter cell(s) equivalent to the mother cell.

Differentiation: Give rise to specialised cell types.

Cell Potency

The range of commitment options available to a cell.

- Totipotent
- Pluripotent
- Multipotent

Totipotent

A totipotent cell has the capacity to form an entire organism

Pluripotent

Multipotent

 Can form multiple cell types that constitute an entire tissue or tissues.

- Primary Cells

- Stem Cells

Somatic Stem Cells

Embryonic Stem Cells

Cell Sources

- Stem Cells

• Somatic Somatic Somatic Tissue (Niche) -specific Cord blood & placenta Amniotic fluid

Adult (Niche-specific) Stem Cells

Intestine

Bone marrow

Cord blood stem cells

Features of Somatic Stem Cells

- Limited self-renewal capacity:
 - Niche-dependent self-renewal;
 - Capable of life-long self-renewal.

Multipotent lineage commitment

- Ready for transplantation;
- Lower plasticity (potency);
- No teratoma formation

Bone Marrow Transplantation

'Mesenchymal Stem Cells'

- BMSC (bone marrow stromal cell):
 - A subpopulation of bone marrow cells displaying skeletal differentiation potential (bone, cartilage and fat);
 - Rapid adherence to tissue culture plastic;
 - Fibroblast-like appearance;
 - Have colony-forming unit capacity.
- **MSC:** (exist in BM, liver, adipose tissue,....)
 - A conceptual postnatal progenitor of most if not all derivatives of mesoderm.

Bianoco et al., Cell Stem Cell (2008) 2:313;

'Mesenchymal Stem Cells' in Transplantation

- Treat other diseases:
 - heart failure.

By production of cytokines and other factors

• Enhance engraftment of other stem cells.

English et al., Cell Stem Cell (2010) 7:431.

Cell Sources

- Primary

- Stem

Somatic

Niche-specific Cord blood & placenta Amnionic fluid

Embryonic Stem Cells

Embryonic Stem Cells (source)

Features of Embryonic Stem Cells

Embryonic Germ layers

Ectoderm: Neural lineages, skin cells, etc; Mesoderm: Bone, muscle, blood cells, etc; Endoderm: Liver, pancrease, lung, etc.

Differentiation of ESC in vitro

• Embryoid body:

Differentiation of ESC in vivo

Teratomas

Chimera

B. Generation of gene targeted mice

Gene Targeting in Mice

The Nobel Prize in Physiology or Medicine (2007)

Martin J. Evans Mario R. Capecchi Oliver Smithies

Evans & Kaufman. Nature292;154-6:1981

Regenerative Medicine

http://www.eurostemcell.org/Outreach/outreach_about_stem_cells.htm

In vitro fertilization

Family completed

Frozen embryos

Challenges & Hurdles

Challenges:

- Differentiation of specific cell types;
- Integration and Survival.

'Directed' differentiation of stem cells

- Medium supplementation
- Co-culture
- Gene transduction

Dopaminergic Neuron Differentiation

For transplantation

Challenges & Hurdles

Challenges:

- Differentiation of specific cell types;
- Integration and Survival.
- Hurdles:
 - Immune rejection;
 - Tumorigenesis

Tumorigenesis

- Optimal culture conditions.
 Maintain genome stability.
- Eliminating undifferentiated hESC before transplantation.
 - Removing undifferentiated hESC by FACS sorting, etc.
- Genetic modification of cells to eliminate tumour cells.
 - Toxic ablation of tumour cells.

- Stem Cell Bank.
- Immune suppression.
- Immune tolerance.
- Reprogramming.

Stem Cell Bank:

– ABO-antigen, HLA matching

- Stem Cell Bank.
- Immune suppression:

- Application of Immune suppression drug.

- Stem Cell Bank.
- Immune suppression.
- Immune tolerance:

– Haematopoietic chimerism

Immune tolerance: -Haematopoietic chimerism

Nature Reviews Immunology (2002) 2, 859-871

- Stem Cell Bank
- Immune suppression
- Immune tolerance
- Reprogramming:
 - Therapeutic cloning;
 - Reprogramming by other factors.

Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors

Takahashi & Yamanaka Cell 126;663:2006

- Not the same as ESCs.
- Viral delivery & transgene integration.
- May be selection of undifferentiated cells.
- Higher rates of malignancy than ESCs
- Inefficient 1 in 5000 transfected cells

Bone marrow

VS

Embryonic

Pros:

- BM Tx is routine
- Can be autologous
- No teratomas
- Clinical trails

Cons:

- Low numbers
- Reduce with age
- Slow growth
- Limited plasticity
- Source/promotion of Ca

Pros:

- Pluripotency
- Availability
- Rapid growth

Cons:

- Safety
- Teratomas
- Immunotolerance
- Ethics

- Daley & Scadden (2008) Prospect for stem cell-based therapy. *Cell* 132:544.
- Bradley et al (2002) Stem cell medicine encounters the immune system. Nature Review Immunology 2: 859-871.