

Imperial College London

Introduction to MRI

Donald McRobbie

Head of Radiological Sciences Unit Senior Lecturer in Imaging

Imperial College Healthcare NHS Trust Imperial College London

Imperial College Healthcare

Contents

- MR signal
- Image contrast
 - Spin Echo
 - Gradient echo
 - Diffusion imaging
- Image formation
- MR technology
- Safety

Macroscopic magnetisation vector

Imperial College Healthcare MHS

Apply RF at resonant frequency

What are we scanning?

5

Dephasing T2*

Imperial College Healthcare

Image contrast

 MR signal is made as an echo after we put RF energy in: This is called Excitation

- The time between the RF pulse and the echo is TE
- The time between the RF excitations is TR

T1

T1 is a measure of how long the RF energy stays in tissues

For fluids, this is a relatively long time 100s of milli-seconds)

Increased water content from oedema or increased vascularisation often means that T1 is longer for diseased tissues.

Imperial College Healthcare

T2

T2 is a measure of how long the signal remains (how long the echo reverberates)

Solid tissues have very short T2 (< 1ms) "Watery" tissues have longer T2 (100s of ms)

Increased water content from oedema or increased vascularisation often means that T2 is longer for diseased tissues.

Controlling the "weighting"

TE controls the T2 weighting

TE (msec)

Imperial College London

Imperial College Healthcare NHS NHS Trust

Spin echo contrast summary

- Spin echo (SE) is the "standard way"
- Most reliable image quality
- Has long TR
- Longer scan times
- Fast/turbo SE speeds it up

Spin echo	TE			
TR	<40 ms	>75 ms		
< 700 ms	T1w	0		
>1500 ms	PDw	TŹw		

Fast / turbo spin echo

Like Spin echo – but faster

Single shot fast/turbo spin echo - fast

Echo planar imaging (EPI) - fastest

Imperial College London

Imperial College Healthcare

Gradient echo

- Gradient echo (GE) is faster than SE
- Good for contrastenhanced, dynamic scans, angio, localisers
- Has very short TR
- A new sequence parameter: flip angle α
- T2* (like T2 but affected by scanner)

Gradients

A gradient is a linear variation in B_z field with position

(mT/m)

Imperial College London

Imperial College Healthcare NHS

Forming a gradient echo

Controlling T1 contrast in GE

Imperial College London

Imperial College Healthcare

Removal of fat

Fat sat

 Chemical saturation, uses frequency difference

Water selection

- Uses phase differences

In-phase / out-of-phase

- Phase cancellation

STIR, SPIR, SPAIR

- Inversion recovery sequence
- Relaxation time of fat

Inversion recovery

Imperial College London

Imperial College Healthcare

Phase cancellation artefact

Water-fat images: Dixon Method

Acquire IP and OOP images IP= Water+ Fat OOP = Water- Fat

In phase

Out of phase

Imperial College London

Imperial College Healthcare

Diffusion-weighted imaging

Tumour in the liver more clearly shown on b-value 1200 s/mm²

"b value" controls the diffusion contrast

Intracellular and extracellular

Free diffusion

Low cellularity Defective membrane **Restricted diffusion**

High cellularity

Imperial College London

London

ADC measurement

Apparent Diffusion Coefficient

Tissue	ADC x 10 ³ mm ² /s
Water	2.0
WM/GM	0.7/ 0.9
Liver	1.8
Liver benign Cysts/hemangioma	2.5
Liver Metastases/HCC	1.1
Kidney Cortex/medula	2.4/ 2.2
Prostate Peri/central	1.9/1.5

Imperial College London

Whole body diffusion

Use DW-EPI STIR Free breathing High b (1000) Parallel imaging Multiple averages Multiple stations MIP / contrast reversal

Takahara, T., et al., Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiation Medicine, 2004. 22(4): p. 275-82

Position-dependent frequency

Imaging pulse sequence

3D scanning

- Very rapid TR gradient echo acquisition, low α
- Preparation pre-pulse (e.g. Inversion)
- T1 contrast

Imperial College Healthcare MHS

MRI system overview

Superconducting Magnets

- •Windings cooled to close to absolute zero
- Liquid Helium:
 - 269°C boiling point
- Contained in cryostat
- In superconducting state windings have no electrical resistance
- Current persists permanently
- •Very stable. Uniform and strong fields
- Energy expended in cooling

Imperial College London

Gradient coils

 $G_x = dB_z/dx; G_v = dB_v/dy; G_z = dB_z/dz$

Array coils

Improve SNR

- Lower NEX
- Higher Resolution
- Shorten scan time
- Better breath-hold
- Greater coverage

 Less need to move patient

Imperial College London

Imperial College Healthcare NHS Trust

New technical developments

- High field More SNR
- Wide bore magnets
 Better for patients
- Parallel imaging
 Faster scans
- Parallel transmit
 More uniform
 excitation at high B₀
- Direct digital receive

Better SNR

Birdcage coil

Parallel Tx

Safety: EMF exposures in MRI

The fringe field of the magnet – *dB/dr*

- Static magnetic field in magnet *B₀*
- Gradients time-varying fields
 G_{x,y,z}
- RF time-varying magnetic field
 B₁

Imperial College London

Imperial College Healthcare NHS Trust

Electro-magnetic spectrum

Frequency (Hz)										
	10 ⁶	10 ⁸	10 ¹⁰	10 ¹²	1014	10 ¹⁶ 1	10 ¹⁸ 10 ²⁰			
	Radio	Microwav	ve mm	Infrared	Ultravo	oilet X-ray	Gamma ray			
10	2	1 10	D ⁻² 10 ⁻⁴	10-6	10-8	10-10	10 ⁻¹² 10 ⁻¹⁴			
Wa	velength (m)		0	°O(
				Cell	Mol	ecule Aton	n Nucleus			
			a.L							
	MRI		imaging	Thermogra	aphy	X-ray	PET			
Imper Lond	rial College						innovation respect achievement pride			

Force fields I

Translational force

- magnetic susceptibility χ
- Volume V
- field B
- fringe field gradient dB/dr

$$\mathbf{F} \propto \chi \mathbf{V} \mathbf{B} \cdot \frac{d\mathbf{B}}{dr}$$

Needs the field to *vary* over distance Strongest near bore entrance

Imperial College London

Force fields II

Torque (twisting force)

- •Objects twisted even in uniform fields
- Depends on B²
- Affects implanted objects

Strongest within the bore of the magnet

Active implants - risks

- Dislocation
- Malfunction
 Programming changes
- Loss of therapy
 - Inhibition
 - Unwanted stimulation
- Loss of data
- Damage to device
- Vibration

Imperial College

- Induced voltages
- · Heating in lead wires
- Image artefacts

Imperial College Healthcare

Passive implants - risks

Dislocation – extremely unlikely with modern implants RF heating

CoCrMo ASTM F75

Bio-effects

- Vertigo
- Taste sensations
 Associated with head movement in static field
- Peripheral nerve stimulation From time-varying-gradients

• **Tissue heating from RF** SAR = specific absorption rate (W/kg)

Imperial College London Peripheral nerve stimulation is not harmful

Imperial College Healthcare

MHRA advice: Pregnancy

Patients

- Clinical decision
- Acoustic noise use quieter gradients where possible
- Keep within lower limits
- Consent required

Staff

- Don't stay in room during scanning
- MHRA /SoR advice carry on except in room during scan

Public

MHRA: Whole term - less than 3mT

Summary

- MRI detects the hydrogen nucleus using static and RF magnetic fields
- Magnetic field gradient pulses localise the signal to produce the image
- Image contrast depends upon T1 and T2 relaxation times and molecular diffusion
- Magnets are 1.5-3T; technology is developing
- Minor acute bio-effects, but the MR environment is hazardous for ferromagnetic objects and active implants.

