Imperial College London

Ubiquitin & NF-kB activation

Maurice Darding PhD

Centre for Cell Signalling and Inflammation (CCSI) Division of Immunology and Inflammation Department of Medicine

Overview

Basic Principles

- Ubiquitin
- NF-кВ

Novel research

• Role of linear ubiquitylation in NF-kB signalling and inflammation

Ubiquitin

- Post-translational modifications (PTM) of proteins include: Phosorylation, glucosylation, acetylation, etc ... and <u>ubiquitylation</u>
- Ubiquitin is a small (8 kDa) protein abundantly present in cells
- Ubiquitylation: the covalent attachment of ubiquitin to Lysine (K) residues of target proteins (substrate)

Ubiquitylation: 3 step process

- **E1** : Ubiquitin activating enzyme (ATP-dependent)
- E2 : Ubiquitin-conjugating enzyme Ubiquitin molecule is transferred to E2, which can bind to E3
- E3 : Ubiquitin ligase

E3 enzymes bind to substrates (target protein) and mediate the transfer of ubiquitin from E2 to substrate

Ubiquitylation (ubiquitination)

Ubiquitin carries 7 internal Lysines

Ubiquitin function

UBIQUITIN MODIFICATION PROCESS REGULATED

(Adapted from Hoeller et al. Nature Reviews Cancer 2006)

Ubiquitin binding domains (UBD).

UBIQUITIN MODIFICATION PROCESS REGULATED

(Adapted from Hoeller et al. Nature Reviews Cancer 2006)

<u>De-ub</u>iquitylating enzymes (DUB)

Ubiquitin signalling

NF-κB

- Nuclear-Factor (NF)- κB: family of transcription factors
- Important in the regulation of genes involved in cell survival, cell growth and inflammation.

- RHD = Rel homology domain
- Function as hetero/homo-dimers

IκB proteins inhibit NF-κB activation by sequestering NF-κB dimers in the cytoplasm

NF-kB activation

TNF-R1

- TNF (tumour necrosis factor) is a cytokine that binds to TNF-Receptor I (TNF-R1)
- TNF-R1 belongs to a large family of plasma-membrane-receptors that can activate <u>NF-κB as well as cell death</u>, depending on the cellular context
- TNF-R1 signalling is implicated in cancer, innate immunity and inflammation
- TNF-R1 signalling is a model for **ubiquitin-mediated NF-kB activation**

Composition of the TNF-receptor signalling complex (TNF-RSC)

Purification of TNF-Receptor Signalling Complex (TNF-RSC) by Immunoprecipitation (IP)

Purification of TNF-Receptor Signalling Complex (TNF-RSC) by Immunoprecipitation (IP)

SDS-

PAGE

Purification of TNF-Receptor Signalling Complex (TNF-RSC) by Immunoprecipitation (IP)

Mass spectrometric identification of all so far known and two new proteins of the TNF-RSC

HOIL-1 and HOIP are recruited to the TNF-RSC in a stimulation-dependent manner

HOIL-1 and HOIP interact and form an E3-ligase complex

Kirisako et al. (EMBO 2006):

- HOIL-1 and HOIP interact
- HOIL-1 and HOIP form a linear ubiquitin assembly complex (LUBAC)
- = E3 ligase complex

Linear ubiquitylation

Linear ubiquitylation: M1-linked chains (head-to-tail)

Poly-ubiquitin chains linked through the N-terminal Methionine of ubiquitin instead of an internal lysine.

HOIL-1 is recruited to the TNF-RSC in a RIP1-independent manner

HOIL-1 is recruited to the TNF-RSC in a TRAF2/cIAP-dependent manner

HOIL-1 recruitment depends on the catalytic activity of cIAP1/2

HOIL-1 and HOIP directly interact with specific polyubiquitin chains

LUBAC is recruited to the TNF-RSC by cIAP-generated Ubiquitin chains via the TRADD-TRAF2 cIAP signalling axis

HOIL-1/HOIP knock-down reduces TNF-induced NF-κB

HOIL-1 and HOIP are crucial regulators for a number of TNF-dependent genes

HeLa cells

Absence of HOIL-1 renders cells more sensitive to TNF-induced apoptosis

MCF-7 cells

LUBAC knockdown reduces recruitment/retention of TNF-RSC components to the complex

Sharpin is the third novel component of the native TNF-RSC besides HOIP and HOIL-1

Sharpin, HOIP and HOIL-1 are recruited to the TNF-RSC with similar kinetics

HeLa cells

Sharpin, HOIL-1 and HOIP form a trimeric complex (LUBAC)

HOIP is also able to form linear ubiquitin chains in combination with Sharpin

Recruitment of Sharpin, HOIP and HOIL-1 to the TNF-RSC depends on cIAP1/2 and on HOIP

NEMO and RIP1 are modified by LUBAC with linear-linked ubiquitin chains in the TNF-RSC

Phenotype of Sharpin mutant cpdm Mice

- Spontaneous base pair deletion leads to severe chronic proliferative dermatitis (*cpdm*)
- Multi-organ inflammation (apart from skin also affects liver, forestomach, oesophagus, etc.)
- Defective organisation of lymphoid tissue (lack of well-formed follicles, germinal centres and follicular DCs)
- absence of marginal zone in the spleen; absence of Peyer's patches
- Increased cell death of keratinocytes

Sharpin is required for effective TNF -induced NF-κB activation and, consequently, gene induction

MEFs

TNF-induced NF-κB activation is impaired in primary *cpdm*-derived keratinocytes cells

Increased TNF-induced cell death in cpdm MEFs

Loss of Sharpin results in a cell death-favouring dysregulation of TNF-induced signalling

TNF deficiency corrects the inflammatory phenotype in *cpdm* mice

cpdm TNF+/+

cpdm TNF-/-

TNF deficiency corrects the inflammatory phenotype in *cpdm* mice

Summary

- Sharpin, HOIP and HOIL-1 form the Linear ubiquitin assembly complex (LUBAC) and are novel components of the TNF receptor signalling complex (TNF-RSC)
- Recruitment of Sharpin, HOIP and HOIL-1 to the TNF-RSC depends on cIAP1/2
- Linear ubiquitylation, mediated by LUBAC, enables efficient TNF-induced gene induction by NF-kB and inhibition of cell death
- Lack of Sharpin causes a cell death-favouring dysregulation of TNF signalling and an inflammatory phenotype in mice (cpdm)
- *cpdm* MEFs and primary keratinocytes are susceptible to TNF-induced cell death
- TNF deficiency corrects the inflammatory abnormalities observed in *cpdm* mice

Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency

Bertrand Boisson^{1,18}, Emmanuel Laplantine^{2,18}, Carolina Prando^{1,18}, Silvia Giliani³, Elisabeth Israelsson⁴, Zhaohui Xu⁵, Avinash Abhyankar¹, Laura Israël^{6,7}, Giraldina Trevejo-Nunez¹, Dusan Bogunovic¹, Alma-Martina Cepika⁵, Donna MacDuff⁸, Maya Chrabieh^{6,7}, Marjorie Hubeau^{6,7}, Fanny Bajolle⁹, Marianne Debré¹⁰, Evelina Mazzolari³, Donatella Vairo³, Fabrice Agou¹¹, Herbert W Virgin⁸, Xavier Bossuyt¹², Caroline Rambaud¹³, Fabio Facchetti¹⁴, Damien Bonnet^{7,9}, Pierre Quartier^{7,10}, Jean-Christophe Fournet^{7,15}, Virginia Pascual⁵, Damien Chaussabel^{4,5}, Luigi D Notarangelo¹⁶, Anne Puel^{6,7}, Alain Israël^{2,18}, Jean-Laurent Casanova^{1,6,7,10,18} & Capucine Picard^{6,7,10,17,18}

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in *HOIL1* (*RBCK1*), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF- κ B activation in response to interleukin 1 β (IL-1 β) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1 β . The consequences of human HOIL-1 and LUBAC deficiencies for IL-1 β responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF- κ B–dependent IL-1 β responses differently in different cell types.

Received 6 August; accepted 24 September; published online 28 October 2012; dol:10.1038/nl.2457

Learning Objectives

You will be able to:

- describe the general mechanisms of ubiquitylation
- describe the general mechanisms of NF-κB signalling
- describe the TNF-R1 signalling pathway
- explain the role of LUBAC and linear ubiquitylation in TNF-R1 signalling
- understand the biological consequences of loss of linear ubiquitylation