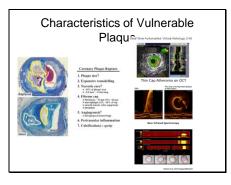


Slide 3

Aims and Objectives

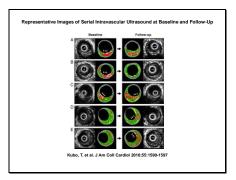
- · Outline the process of atherosclerosis
- Discuss the concept of vulnerable atherosclerotic plaque and its pathological significance.
- Outline the main interventional imaging technologies available to identify vulnerable plaque
- Present novel work undertaken by our group aimed to target vulnerable plaque
- Discuss the role of novel biomarkers in
- identifying vulnerable patients..

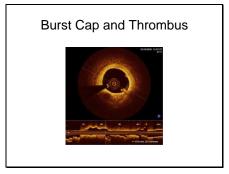

Concept of plaque stabilisation

 emerged about 20 years ago in an attempt to explain the discrepancy between the reduction of cardiovascular events in patients receiving lipid lowering therapy without concomitant regression of coronary atherosclerosis in angiography.

Slide 5

The hypothesis of Plaque stabilisation


- A plaque can be stabilised by increasing the thickness of fibrous cap, reducing inflammation in the fibrous cap and reducing the size of atheromatous care.
- A plaque may be stabilised against thrombosis independent of changes in plaque size and luminal obstruction.



Thin Cap fibro-atheroma Fibroatheroma TCFA

- IVUS VH definition: a large (>10% of plaque area) necrotic core component that is in extensive contact (>30° arc) with the lumen Invisible cap.
- OCT derfinition : lipid-rich plaque with fibrotic cap thickness <65 $\mu\text{m}.$

Slide 8

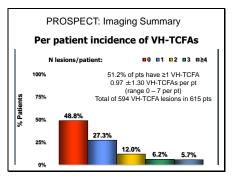
Slide 11

The PROSPECT Trial

Providing Regional Observations to Study Predictors of Events in the Coronary Tree

A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque

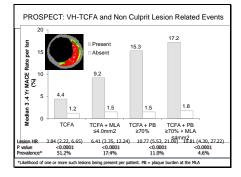
Slide 12


PROSPECT – Study Design

 A prospective, multicenter natural history study using 3 vessel multimodality intracoronary imaging to quantify the clinical event rate due to atherosclerotic progression and to identify those lesions which place pts at risk for unexpected adverse cardiovascular events

Slide 13	PROSPECT - Design	
	700 pts with ACS UA (with ECGΔ) or NSTEMI or STEMI >24° undergoing PCI of 1 or 2 major coronary arteries	
	at up to 40 sites in the U.S. and Europe Metabolic S. Honorker • Waist Crum • Fast lipids • Fast glu • Hg DA1C • Fast fine • Creatinine • Creatinine	S

Culp	el imaging post PCI rit artery, followed by on-culprit arteries
	(QCA of entire coronary tree) IVUS Virtual histology Ipography (n=~350)
Meds rec ← Aspirin Plavix 1yr Statin Repeat biomarkers @ 30 days, 6 months	F/U: 1 mo, 6 mo,N=50-100 1 yr, 2 yr, Repeat imaging ±3-5 yrs in pts with events

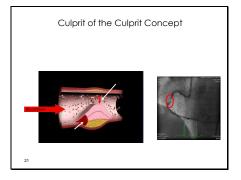


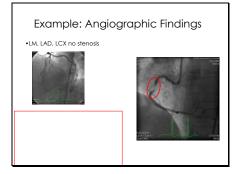
PR	OSPE	CT: M	ACE	
3-year	follow-u	o, non hie	rarchical	
	All	Culprit lesion related	Non culprit lesion related	Indeter- minate
Cardiac death	1.9% (12)	0.2% (1)	0% (0)	1.8% (11)
Cardiac arrest	0.5% (3)	0.3% (2)	0% (0)	0.2% (1)
MI (STEMI or NSTEMI)	3.3% (21)	2.0% (13)	1.0% (6)	0.3% (2)
Unstable angina	8.0% (51)	4.5% (29)	3.3% (21)	0.5% (3)
Increasing angina	14.5% (93)	9.2% (59)	8.5% (54)	0.3% (2)
Composite MACE	20.4% (132)	12.9% (83)	11.6% (74)	2.7% (17)
Cardiac death, arrest or MI	4.9% (31)	2.2% (14)	1.0% (6)	1.9% (12)
Rates are 3-yr Kaplan-Meier estim	ates (n of events)			

Slide 17

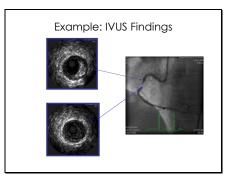
PROSPECT: Multiv Culprit Lesio Independent pro events by logist	on Related Even edictors of lesi	ion level
Variable	<u>OR [95% CI]</u>	<u>P value</u>
PB _{MLA} ≥70%	4.99 [2.54, 9.79]	<0.0001
VH-TCFA	3.00 [1.68, 5.37]	0.0002
MLA ≤4.0 mm²	2.77 [1.32, 5.81]	0.007
Lesion length ≥11.6 mm	1.97 [0.94, 4.16]	0.07

PROSPECT - Conclusions

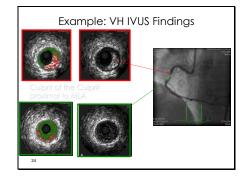

- Approximately 20% of pts with ACS successfully treated with stents and contemporary medical Rx develop MACE within 3 years, with adverse events equally attributable to recurrence at originally treated culprit lesions (treatment failure) and to previously untreated non culprit coronary segments
- Approximately 12% of pts develop MACE from <u>non</u> <u>culprit lesions</u> during 3 years of follow-up
- Patients treated with contemporary medical therapy who develop non culprit lesion events present most commonly with progressive or unstable angina, and
- rarely with cardiac death, cardiac arrest or MI

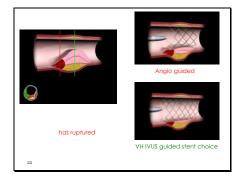

Slide 20

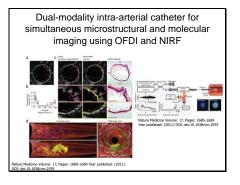
PROSPECT - Conclusions


While plaques which are responsible for unanticipated future MACE are frequently angiographically mild, most untreated plaques which become symptomatic have a large plaque burden and a small lumen area (which are detectable by IVUS but not by angiography)

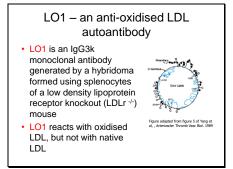
- The prospective identification of non culprit lesions prone to develop MACE within 3 years can be enhanced by characterization of underlying plaque morphology with virtual histology, with VH-TCFAs representing the highest risk lesion type
- The combination of large plaque burden (IVUS) and a large necrotic core without a visible cap (VH-TCFA) identifies lesions which are at especially high risk for future adverse cardiovascular events

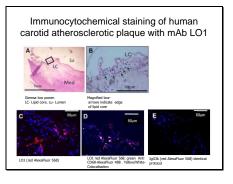


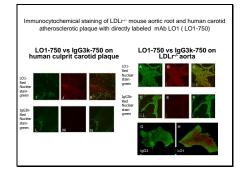


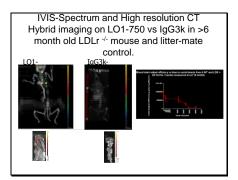


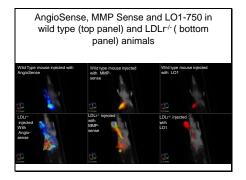
Slide 25

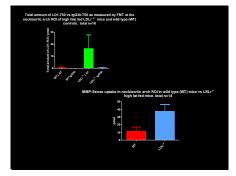


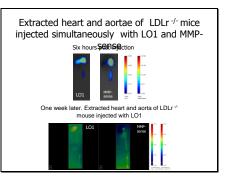

Molecular identification of vulnerable plaque- so what?

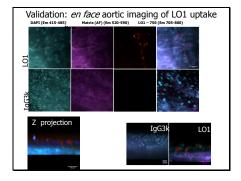

- A risk stratification tool beyond Framingham Risk Scoring, or morphological risk stratification techniques (CT/ IVUS/OCT/Lipiscan)
- Use in progression studies (eg when studying statins)
- Potential as a carrier for targeted drug delivery
 Use as an adjunctive tool for the interventional cardiologist- where to stent and what with?








Slide 32


ld type controls.	
d type mouse injected with LO1-750	158.50
- 1125.00	- 112.50
-16.0	- 15.58
r ^{r,} mouse injected with LO1-750	- 37.56
Loo Per Come	-0.00 [x40] 101-750
	r ¹ mouse injected with LO1-760

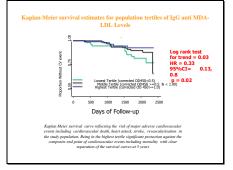
Slide 35

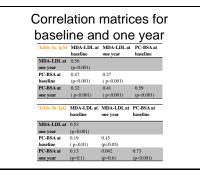
From the vulnerable plaque to the vulnerable patient

Risk stratifcation beyond classical risk factors. Lipids and CRP

Slide 38

ASCOT-ANTIOX. The ASCOT Anti-Oxidised LDL Antibodies Substudy.


Khamis RY, Johns M et al Heart 2011;97:e7 doi:10.1136/heartjnl-2011-300920b.9


IgG anti-malondialdehyde-LDL antibodies are independent predictors of protection from cardiovascular events in a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)

Dasei	eline Characteristics							
Vasiable	AB (8 = 199)		Placebe-(ar= 99)		Jahrs Vantatas (a - 199)			
Male sex, a (*a)	164	(224)	92	(12%)	92	(92%)		
Age, yours	63.4	(7.6)	43.4	(7.0)	63.5	(7.8)		
Bodyman infer. Ig w	28.5	(4.1)	28.6	(4.1)	263	(8.1)		
Syntolic Mood pressure, multip	159	(24)	3.9.9	(26)	159	(10)		
Deatoke blood provens - mailing	93	(9)	83	(8)	93	(7)		
Heat nte , bjan	7.0	(8.2)	78	(12)	69	(17)		
Total disdepters), anno11	5.6	(0.7)	5.5	(0.7)	5.6	(0.7)		
Low-fanaty kpopotan, musil	3.5	(8.7)	3.5	(8.7)	3.4	(6.8)		
High-lensity hp-protein, mixed I	1.3	(0.4)	1.4	(6.4)	13	(0.3)		
Trighteers lee, named P	1.6	(1.1.1.9)	1.5	(10,2.0)	14	(1.1.1.9)		
Continue , pendil	100	(8.5)	**	(15)	10.1	(15)		
Faiting photose.mmoil)	5.2	(0.6)	12	(9.6)	5.2	(0.4)		
(12. ng)	1.98	(1.10,4.95)	1.68	(8.77, 4.89)	2.55	(1.14.4.74)		
Cumunt concilions, in 1944	44	(22)	28	(21)	23	(25)		
Ig0 and MDA-LDE, also at baseline . Standard-Connoted OD_{470}	0.70	(9.57)	8.71	(8,81)	0.70	(0.34)		
IgM ante MDA-LDE, alse at Insuekaw , Standard- Consistent OD _{ante}	0.70	(0.73)	8.85	(8.85)	8.49	(0.73)		
Igii anti PC-BEA alte at bassline : Standard-Conserved CD450	1.24	(0.685	1.24	(8.68)	1.32	(0.67)		
IgM anti PC-BRE also at bandine Standards Connected ODesc	6.87	(0.45)	0.89	(8.87)	0.85	(0.1))		
Trini Ig(1 at Faudaue . Namhod-Corrected CD ₂₀₀	1.76	(0.27)	1.78	(8.20)	1.77	(0.24)		
Total IaM at hundred - Standard - Corrected CD.co.	1.14	09.325	1.18	18.331	1.14	(0.31)		

Slide 40

	(One ye	ar				
Variable	Placebo (n = 99)		Atorvastatin (n = 100)		Differe nce (P-	95% CI	р
IgG anti MDA-LDL abs at baseline , Standard-Corrected OD450	0.74	(0.46)	0.76	(0.42)	-0.02	(-0.15, 0.11)	0.7
IgM anti MDA-LDL abs at baseline . Standard- Corrected		(0.40)	0.70	(0.42)	10.02	(-0.23.	
OD450 IgG anti PC-BSA abs at baseline	0.85	(0.61)	0.87	(0.83)	-0.02	0.20)	0.9
, Standard-Corrected OD450	1.21	(0.59)	1.32	(0.66)	-0.1	0.08)	0.3
IgM anti PC-BSA abs at baseline , Standard-Corrected OD450	0.93	(0.46)	0.92	(0.43)	0.18	(-0.11, 0.15)	0.8
Total cholesterol, mmol/1 Low density lipoprotein, mmol/1		(0.8) (0.8)		(0.6) (0.5)		(1.3, 1.7) (1.1, 1.5)	<0.00
High density lipoprotein, mmol/1		(0.4)		(0.4)		(-0.1,0.1) (0.07,	>0.9
log CRP, mg/l¶	0.69	(1.08)	0.29	(1.23)	0.39	0.72)	0.01

Relationship between LDL and antibodies at baseline and one year

1 -0.04	P.
-0.08	
-0.04	
	0.65
-0.07	0.57
-0.12	0.32
-8.08	11/12
	Internet and the second se
	-0.05

Slide 44

Summary

- Identification of vulnerable plaque is so far elusive.
- Morphology based technologies (IVUS-VH and OCT are promising
- Antibody targeted imaging of highly oxidised LDL may add an important facet for the identification of 'inflamed' plaque
- Non invasive Identification of vulnerable patients needs to go hand in hand with interventional technologies