Identification of bacterial virulence factors

Learning objectives

You should be able to:

(1) Give examples of methods used to identify virulence factors

(2) Show how application of such methods can lead to new therapies

Why is understanding virulence important?

Antibiotics

Vaccines

Epidemiology

What type of virulence factor should we look for?

Involved in host interaction
adhesion, invasion, toxins etc

Essential

 Important for survival and/or expressed in vivo

Why look for genes important for survival or expressed *in vivo*?

- Antibiotic targets
- Vaccines
 - attenuated
 - subunit

Understanding pathogenesis

some methods

some examples...

(1) Screen for gain of function

(2) Screen for loss of function

Dowling AJ et al. (2010) Genome-Wide analysis reveals loci encoding anti-macrophage factors in the human pathogen *Burkholderia pseudomallei* K96243. PLoS ONE 5: e15693.

(1) Screen for gain of function

(2) Screen for loss of function

Signature-tagged mutagenesis

Hensel M et al. (1995)

Simultaneous identification of bacterial virulence genes by negative selection

Science 269:400-403.

Transposons

- Inverted repeats
- Antibiotic resistance
- Useful for making random mutants e.g. Tn10, mariner

Salmonella typhimurium recovered from infected mice

Led to identification of T3SS

A Input pool

B Recovered pool

STM does NOT work if you have clonal expansion

ABC ABC A B C 1234567 **Output pool A Output pool B** Input pool

Mazurkiewicz et al. (2006) Nature Reviews Genetics 7:929-939

Attenuated mutant

Lung infection-defective signature-tagged mutant strains assembled into virulence-attenuated pools (VAPs)

Virulence attenuated pools (VAPs)

Gene order is not always simple

Care!

Reporter genes

- Colour change and activity
 β-galactosidase (LacZ)
- Light
 - Luciferase (Lux)
- Fluorescence
 - Green Fluorescent Protein (GFP)

S. pneumoniae expressing lux

Kadurugamuwa JL et al. (2005) Infect Immun 73:7836-43

Proteus mirabilis expressing lux - catheter infection

Kadurugamuwa JL et al. (2005) Infect Immun 73:3878-87.

Concept of anti-virulence therapy

Cegelski et al. (2008) Nat Rev. Microbiol 2008, 6:17-27

No compound

pilicide

Virstatin inhibits cholera toxin formation

Paton AW et al. (2006) Nature Reviews Microbiology 4, 193-200

Having a genome helps...

Haemophilus influenzae Rd

LPS

Some cool stuff...

(The future?)

Anderson JC et al. (2005) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 315:699-627

Disruption of biofilms using dispersin B

- S. epidermidis
 S. aureus
- Catheter infection

 poly-gamma-DL-glutamic acid (PGA) is required for biofilm formation

SEM of *S. epidermidis* on a catheter

Two-pronged attack strategy for biofilm removal with enzymatically active DspB-expressing phage

Lu TK & Collins JJ (2007) PNAS 104:11197-11202

Intact biofilm

Disrupted biofilm

Messages

- Lots of strategies possible
- Know the genetics of your organism
- Consider time and effort

- Different techniques give you different genes
- Know the advantages and disadvantages of the technique applied to your pathogen and system