

Growth factors and preimplantation development

• Not essential, but important

Evidence:

- Slower development in vitro
- Poor development of single embryos in vitro
- Improved development in groups/small drops
- Expression of growth factor receptors
- Expression of growth factor ligands by embryo and tract
- Improved development with co-cultureImproved development with exogenous growth factors
-

© Kate Hardy

Imperial College

Mouse knockout studies					
EGF-R	implantation failure	Threadgill et al 1995			
CSF-1	↓ blastocyst cell number	Pollard 1997			
GM-CSF	↓ blastocyst cell number	Robertson 2001			
TGF- α	↑ blastocyst apoptosis	Brison & Schultz 1998			
LIF	implantation failure	Stewart et al 1992			
© Kate Hardy		Imperial College London			

IGF-family receptors & ligands in human embryos					
	unfert	2c	4c	8c	Blast
Receptor					
IGF-IR	+	+	+	+	+
Ligand					
IGF-I	-	-	_	-	-
© Kate Hardy					Imperial College London

Production of IGF-I by Fallopian tube				
	mRNA		Protein	
IGF-I in tubal fluid				
	Fallopian Tube	Uterus	Serum	
	8.0nM ± 1.5 n = 5	10.9nM ± 2.8 n = 6	21.2nM ± 1.6 n = 5	Lighten <i>et al.</i> , 1998 Hum. Reprod. 13 , 3144
© Kate H	Hardy			Imperial College London

HB-EGF

- Two biologically active forms
- transmembrane form
 adhesion
- mature soluble form
 stimulates cell proliferation, migration and cell motility

© Kate Hardy

Imperial College

Conclusions

- human embryos and reproductive tract express a variety of growth factor receptors and ligands
- some are involved in regulating cell division and apoptosis (e.g. Granulocyte-macrophage colony-stimulating factor, IGF-1)
- others involved in blastocyst development and hatching (eg Transforming growth factor-α, HB-EGF) and implantation itself (HB-EGF, Leukaemia inhibitory factor)

© Kate Hardy

Imperial College

