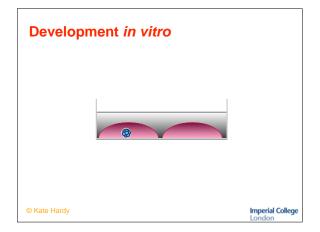
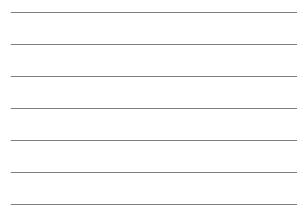

Imperial College London

BSc in Reproductive & Developmental Sciences


Environmental regulation of preimplantation development


Kate Hardy Institute of Reproductive and Developmental Biology

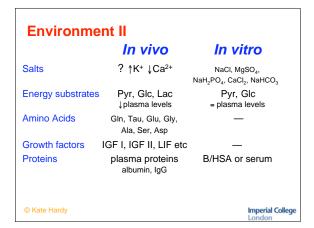
Importance of embryo culture

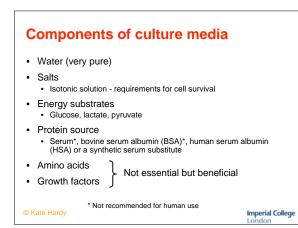
- Culture of embryos and gametes is fundamental for
 assisted reproductive technologies
 - research
- Successful culture, and further system optimization, requires understanding of embryo physiology
- Suboptimal culture has been associated with
 - altered gene expression & genomic imprinting (mice)
 - developmental defects (large offspring syndrome) in domestic species

© Kate Hardy

Imperial College

Assisted reproduction and environment


• IVF and embryo culture: gametes and embryos in artificial environment


Does this matter?

- Culture media contain chemicals at different concentrations to those found *in vivo*
- Media may contain chemicals not found in vivo
- Media may lack chemicals present in vivo

© Kate Hardy

Environment I	
In vivo	In vitro
Dynamic	Static
Ciliated & secretory cells	No cells
Varies with cycle	Invariant
	Delayed development
© Kate Hardy	Imperial College London

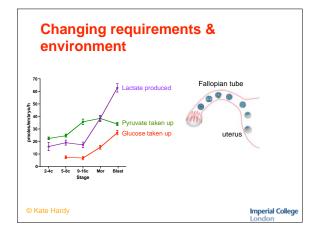
Evidence for suboptimal culture

Historically

- Embryos from several species blocked in vitro
 - outbred mouse strains at 2-cell
 - · hamster embryos at 2-cell
 - pig embryos at 4-cell
 - · coincided with time of embryonic genome activation

Recently

Blocks overcome by modifying and modernizing culture media

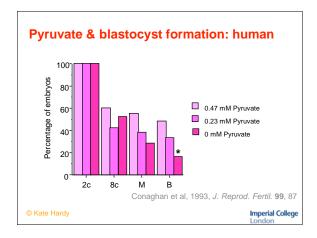

© Kate Hardy

Imperial College

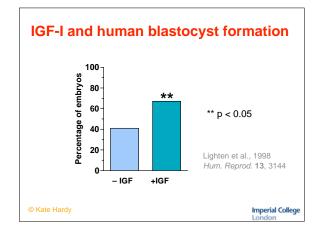
Optimization of culture media

- Recognizing changing environment in vivo
- Recognizing and meeting changing nutritional requirements
- Reducing inhibitory components e.g. glucose
- Identifying trophic factors e.g. growth factors
- Adding other components e.g. osmolytes, free-radical scavengers

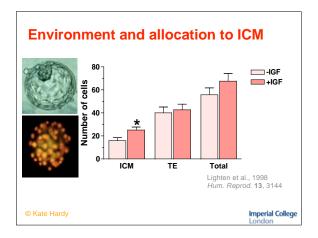
© Kate Hardy

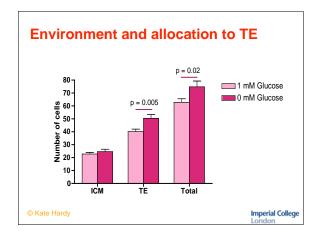


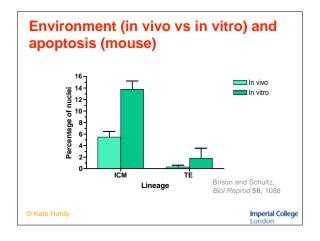
Quantifying improvements in culture

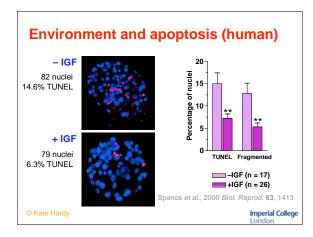

In vitro

- Proportion developing to the blastocyst
- Rate of development
- Blastocyst cell number
- Number of inner cell mass and trophectoderm cellsMetabolism
- In vivo
- Implantation after transfer


© Kate Hardy






Consequences?

- What are the consequences of disturbing number of cells in two lineages?
- · Effects on
 - implantation?
 - embryo/fetal growth?

© Kate Hardy

Environment and metabolism

Culture

- · decreases protein synthesis in rabbit embryos
- · increases protein degradation in rabbit embryos
- increases glycolysis (conversion of glucose to lactate) (mouse and cow) -
 - stress response? embryos with high glycolysis do not implant as well
- increases glycogen content 3-fold (mouse)
- increases reactive oxygen species (ROS) (mouse)
- serum in culture medium causes lipid accumulation in

blastomeres (visible by TEM) Leese, 2002, BioEssays 24, 845

© Kate Hardy

Environment and metabolism

 Amino acids in culture medium improve postimplantation development

However

- Amino acids in culture medium can degrade to ammonium
- Toxic for embryos leads to an encephaly in fetuses (mouse)

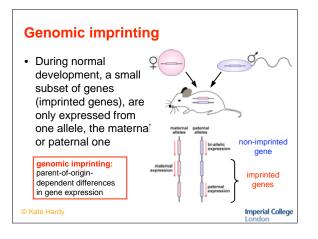
Lane and Gardner, 1994, J. Reprod. Fertil. 102, 305

© Kate Hardy

Imperial College London

Imperial College

Environment & embryo development


Failure to activate embryonic genome

		. 😔 🛞
Gene expression	mouse	Ho et al, 1995 Mol Reprod Dev, 41, 232
	COW	Niemann et al, 2000 Theriogenology, 53, 21
Imprinting	mouse	Doherty et al, 2000 Biol. Reprod. 62 15
	sheep	Young et al, 1999 Theriogenology, 53, 627
Weite Disaster		how order C

Environment and gene expression in cow embryos *in vivo* and *in vitro*

Gene	In vivo	In vitro	
Connexin 43	+	-	
bovine LIF	-	+	
LIF receptor β	-	+	
Hsp 70.1	+	↑	
Glut-1	+	Ļ	
	Niemann et al,	Niemann et al, 2000 Theriogenology, 53, 21	
© Kate Hardy		Imperial College London	

Environment and genomic imprinting Gametogenesis and early development is a critical period for: erasure acquisition of genomic imprints maintenance

Environment and genomic imprinting

Mouse

- H19 imprinted gene
 - Doherty 2000
 in vivo mouse embryos: no paternal expression
 - *in vitro* culture in Whitten's medium: biallelic expression
 - *in vitro* culture in KSOM: only 10% paternal expression

Sheep

- IGF2R imprinted gene
- Young 2001
- IGF-2 R expression reduced in LOS syndrome
- Loss of methylation

© Kate Hardy

Culture and fetal weight

- · Culture decreases fetal weight
- Mouse embryos cultured in the presence of serum are
 less able to implant
 - 20% smaller on day 14
 - decreased expression of the imprinted Igf2* and H19 genes
 - increased expression of the imprinted Grb10 gene
 - Decreased Igf2 expression probably results in decreased growth

© Kate Hardy

Imperial College

Environment and postimplantation development

In other species, culture medium affects:

- Implantation rates
- Fetal development
- Embryo loss
- · Fetal abnormalities

Gardner and Sakkas, 1993, Hum Reprod. 8 288 Lane and Gardner, 1994, J. Reprod. Fertil. 102, 305

© Kate Hardy

Imperial College

Large Offspring Syndrome

(Sheep embryos cultured with human serum)

Preimplantation

Early cavitation

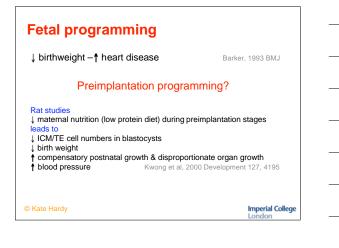
- on
- ↓ compaction
- fragmentation
- f lipid accumulation
- ↓ glucose oxidation
- neonatal death
 Iimb abnormalities

birthweight

Fetal/Postnatal

† gestation length

1 fetal heart/liver weights


fetal death

postnatal growth

© Kate Hardy

Imperial College

Effects of low birthweight

- · Susceptibility to adult-onset disease
 - growth
 - cardiovascular
 - metabolic (eg Diabetes)
 - neurological disorders associated with stress
 - autism
- Different behaviour of adult mice derived from embryos cultured in different media

Ecker et al (2004) PNAS 101, 1595

© Kate Hardy

Imperial College

Alcohol

- Causes fetal abnormalities (fetal alcohol syndrome) and decreases fetal survival
- Mouse oocytes exposed to alcohol have elevated incidence of aneuploidy (action on spindle?)
- · reduced fertilization rates
- · reduced embryo development
- increased fragmentation

Cebral et al, 1999 Alcohol Alcoholism 34, 551

© Kate Hardy

Smoking

- Aberrant meiotic maturation in human oocytes increased proportion of diploid and triploid oocytes
 (should be haploid - failure to separate homologues or chromatids?)
- · Increased aneuploidy in sperm
- Decreased fragmentation in embryos developed from follicles with high cotinine concentrations inhibiting apoptosis?

Zenzes, 2000 Hum Reprod Update 6, 122

© Kate Hardy

Imperial College

Diabetes

- · Increased risk of
 - · First trimester spontaneous abortion
 - · Major fetal malformations
- · Hyperglycaemia major factor
 - · Increases apoptosis in rodent preimplantation embryos
 - Decreases ICM size (diabetic rat)
 - Disturbs gene expression (diabetic mouse)

Moley, 2001 Trends Endocrinol Metab 12, 78 Pampfer et al, 1990, Diabetes, 39, 471

© Kate Hardy

Imperial College

Toxins

Pesticides

- Organochlorines: reduced oocyte maturation, embryo transport, implantation
- Microtubule poisons (chemotherapy)
- increased aneuploidy
- Solvents
- Methylnitrosourea and preimplantation embryos: cleft palate, exencephaly, malformed vertebrae Walker et al, 2000 Hum Reprod Update 6, 564

© Kate Hardy

ART and environment

- gonadotrophins and oocyte maturation
- anaesthetic?
- temperature fluctuations? (spindle)
- composition of culture medium
- plastic culture dishes?
- embryo transfer catheters?
- water?
- copper tubing for gas?
- rubber gloves?

© Kate Hardy

Imperial College

Environment modulates:

- Blastocyst formation and rate of development
- Cell number and allocation to ICM and TE
- Apoptosis
- ?Cell cycle defects (nuclear & chromosomal abnormalities)
- Metabolism
- Gene Expression
- Genomic imprinting
- Implantation and fetal development

© Kate Hardy

