Receptor & Signalling II

Dr Mark Christian IRDB, Hammersmith Campus m.christian@imperial.ac.uk

Learning Outcomes

- 1. To list three key features of regulatory elements.
- 2. To list two functional domains of transcription factors.
- 3. To list the basic structural requirements for Nuclear Receptor (NR) action.
- 4. To classify the NRs as a 'superfamily' of proteins.
- 5. To classify the different types of ligands that modulate the activity of NRs.
- 6. To explain how NRs regulate the expression of a target gene.

Gene Regulation in Eukaryotes

Constitutive expression

Some of these genes expressed in all cells all the time.

House keeping genes are responsible for the routine metabolic functions common to all cells e.g respiration, basic metabolism, proteins of the cytoskeleton and chromosomes.

Regulated expression

Some genes are only expressed in specialised cells. Other differences in gene expression between cell types may be more subtle.

Transcription Factors Regulate Gene Expression

Why does gene expression need to be controlled anyway?

Primary purpose in multicellular organisms is to execute precise developmental decisions so that:

correct genes are expressed at:

- appropriate time
- correct place
- at the required levels

so that development, growth and differentiation proceed correctly.

Stimuli cause alterations in gene expression. Some genes are expressed in response to nutritional/chemical stimuli (sugar, amino acid, hormone signal).

Environmental signal (light, temperature).

Gene Expression Can be Regulated at Many Steps in the Pathway from DNA to RNA to Protein

Protein-coding genes

- Exons whose sequence encodes the polypeptide
- Introns
- Transcription start site
- RNA polymerase II synthesizes precursors of mRNAs.
- Proximal Promoter.

i) **Basal** or **core** promoter located within 40bp of the start site.

ii) "Upstream" promoter which may extend over as many as 200bp upstream.

- Enhancers
- Silencers

The Gene Control Region of a Typical Eukaryotic Gene

The **promoter** is the DNA sequence where the general transcription factors and the polymerase assemble.

The regulatory sequences serve as binding sites for gene regulatory proteins: affects the rate of transcription initiation can be located adjacent to the promoter, far upstream, within introns or downstream of the gene.

Whereas the general transcription factors that assemble at the promoter are similar for all polymerase II transcribed genes, the gene regulatory proteins and the locations of their binding sites relative to the promoter are different for each gene.

RNA polymerase II holoenzyme

- RNA Polymerase II Requires
 General Transcription Factors
- The holoenzyme consists of a complex of RNA polymerase II, the general transcription factors TFIIB, TFIIE, TFIIF, and TFIIH, and several other proteins that activate transcription. (TFII = transcription factor for polymerase II)
- This complex can be recruited directly to a promoter via interaction with TFIID.
- TFIID is composed of TBP (TATA Binding Protein), and TAFs (TBP-assocatiated Factors).

TBP Induces Bending of DNA

The unique DNA bending at the TATA box caused by TBP generates two kinks in the double helix separated by partly unwound DNA may serve as a landmark for an active promoter that helps to attract the other general transcription factors (TFIIB).

TFIIH Enzymatic Activity

TFIIH - has helicase activity (ATP-dependent) and protein kinase activity - phosphorylation of the C-terminus of Pol II is required for its activity.

Features of Response Elements

- contain short consensus sequences
- not fixed in location but usually within 200 bp upstream of the transcription start site
- a single element is usually sufficient to confer a regulatory response
- can be located in a promoter or an enhancer

• a specific protein (transcription factor) binds to the element and the presence of that protein is developmentally regulated

Action of Enhancers

- Without an enhancer, the gene is transcribed at a low basal level.
- Addition of an enhancer, E for example, stimulates transcription.
- The enhancer is active not only when placed just upstream of the promoter, but also when inserted up to several kilobases either upstream or downstream from the transcription start site.
- In addition, enhancers are active in either the forward or reverse orientation.

Gene Activation at a Distance: DNA Looping

- Transcription factors bound at distant enhancers are able to interact with general transcription factors at the promoter.
- The intervening DNA can form loops.
- There is therefore no fundamental difference between the action of transcription factors bound to DNA just upstream of the promoter and to distant enhancers.

Synergistic Action of Transcriptional Activators

Transcriptional synergy:

- Greater than additive effect of the activators.
- Typically observed between different gene activator proteins (transcription factors) from the same organism.
- Also between activator proteins from widely different eukaryotic species when they are experimentally introduced into the same cell (The transcriptional machinery is highly conserved).

Structure of Transcriptional Activators

Transcriptional activators consist of two independent domains.

The DNA-binding domain recognises a specific DNA sequence.

The activation domain interacts with other components of the transcriptional machinery.

The modular structure of a gene activator protein

A functional activator can be reconstituted from the C-terminal portion of the yeast Gal4 protein if it is attached to the DNA-binding domain of a bacterial gene regulatory protein (the LexA protein).

The resulting hybrid protein activates transcription from genes provided that the specific DNA-binding site is present.

Structural motifs commonly found in transcription factors and DNA-binding proteins.

(HTH) Helix-turn-helix domains consist of 2 α helices connected by short chain of amino acids. C-terminal helix fits into major groove of DNA. N-terminal helix – structural component helps position the recognition helix.

The leucine zipper monomer is *amphipathic* [i.e. has hydrophobic residues (leucines) consistently on one face of the helix]. Interactions between the hydrophobic side chains of leucine residues exposed on one side of a helical region are responsible for dimerization. Two α helices form an inverted Y-shape structure that grips the DNA helix.

Zinc finger domains consist of loops in which an α helix and a β sheet coordinately bind a zinc ion (via Cysteine-Cysteine-Histidine-Histidine). Clusters of Zn fingers mediate strong and sequence specific DNA binding.

(HLH) Helix-loop-helix domains are similar to leucine zippers, except that the dimerization domains of these proteins each consist of two helical regions separated by a loop.

x-Helix

α-Helix

Nuclear Receptors - Transcription Factor Family

The Nuclear Receptors are intracellular proteins that:

function as transcription factors

 bind to specific DNA sequences in the promoters or enhancers of target genes

regulate gene expression

•48 genes coding for nuclear receptors in the human genome.

 Some are widely expressed while others are restricted to very specific tissues and cell types.

Structure of NRs

Domain structure of Nuclear Receptors

How can Nuclear Receptors be classified?

LIGAND BINDING

DNA BINDING & DIMERISATION

EXPRESSION PATTERN

Ligands for Nuclear Receptors

Task:

List 4 different substances that can act as ligands for NRs.

The biochemical origins of Nuclear Receptor ligands are varied:

Cholesterol is the biosynthetic source of the steroid hormones

Retinoic acids are produced from β -carotene.

The eicosanoid, prostaglandin J_2 , is a product of fatty acid metabolism.

Thyroid hormone is a tri-iodinated thyronine made as a degradation product of crosslinked iodinated tyrosines in the protein thyroglobulin.

Although diverse in origin, NR ligands are all similar in mass and molecular size.

Bogan et al : Nature Structural Biology 5, 679 - 681 (1998)

Adapted and modified from (Chawla et al Science 294 p1866 2001)

Steroids

A **steroid** is composed of four fused carbon rings: three cyclohexane rings (A, B, C) and one cyclopentane ring (D) that determine the characteristic **sterane** core.

Steroids vary due to additional functional groups attached to the carbon rings and oxidation states of the rings.

S Representative NR Ligand

© 2009 Jack Vanden Heuvel

Designer Androgens in Sport

Dwain Chambers

Marion Jones

Designer Androgens in Sport

THG and related natural and synthetic androgen structures. Note the structural similarities between the two designer androgens norbolethone and THG with THG's parent gestrinone (differing by only a side chain reduction) and the known potent androgens nandrolone and trenbolone.

Endocrine Disrupting Chemicals

Endocrine disruptors are exogenous substances that act like hormones in the endocrine system.

They disrupt the physiologic function of endogenous hormones.

What are the functions of Nuclear Receptors ?

LIGANDS/HORMONES	TARGET TISSUES	PROCESS
•Steroids (androgens,	Brain Hypothalamus Pituitary	Reproduction
mineralocorticoids,	Cardiovascular	Cell growth
glucocorticoids). •Retinoids	Adipose tissue Mammary gland Liver	Cell differentiation
•Thyroid hormone	Reproductive tract Ovary Testes Uterus Prostate	Homeostasis
•Vitamin D	Cervix Seminal Vagina vesicle	Inflammation
•Fatty acids	Pana	IIIIaIIIIIation
•Bile acids	ALL	Apoptosis
 Phospholipids 	CELL TYPES	Aberrant signalling
•Environmental	Korach, 1996	\bigcup
compounds	E Carde	Clinical disorders
(eq plasticisers)		

Current and Potential Therapeutic Indications

TDO	
TRB	Obesity, dyslipidemia, <mark>hypothryroidism</mark>
$PPAR\alpha$	Dyslipidemia, atherosclerosis, inflammation
ΡΡΑRγ	Diabetes, obesity, cancer, inflammation, osteoporosis
LXR α/β	Dyslipidemia, atherosclerosis, diabetes
VDR	Osteoporosis, psoriasis, cancer, inflammation
GR	Arthritis, asthma, immunosuppression, obesity, diabetes
MR	Hypertension, CHF
PR	Contraception, cancer, osteoporosis
AR	Frailty, prostate cancer, sexual dysfunction, osteoporosis
$ER\alpha$	Breast cancer, osteoporosis, cardiovascular disease,
	gynecological disorders, Alzheimer's
ERβ	Prostate cancer, osteoporosis, obesity, cardiovascular disease, Alzheimer's
HNF4 α	Diabetes, dyslipidemia
RAR(α,β,γ) Cancer, psoriasis

RXR(α, β, γ) Diabetes, cancer

© 2009 Jack Vanden Heuvel

Possible Therapeutic Indications

Rev-Erb	Circadian rhythym	●NGFI-B	Drug abuse, cancer, schizophrenia,
(α,β)	atherosclerosis		manic-depression, psychoses,
ROR α	Atherosclerosis,		neurodegeneration, immunomodulation
	dyslipidemia, inflammation, rheumatoid arthritis,	•NUKKI	depression, cancer
	osteoporosis, neurodegeneration	•NOR1	Drug abuse, cancer, immunomodulation
RORγ	Osteoporosis,		
	immunosuppression	•SF-1	Adrenal disease, disorders of steroid
FXR	Dyslipidemia, liver disease		metabolism
PXR, CAR	Xenobiotic metabolism	●LRH	Breast cancer, fertility, dyslipidemia
TR2, TR4	Cancer, male fertility	 GCNF 	Fertility/contraception
TLX	Neurodegeneration	•DAX-1	Adrenal disease, fertility, gynecologic
PNR	Retinal degeneration		disorders
COUP-TFI	Breast cancer, neural development	●SHP	Obesity, dyslipidemia, diabetes, liver disease, cancer
COUP-TEII	Cancer angiogenesis	•ERRα	Osteoporosis, dyslipidemia
	Litering /gynacological	∙ERRβ	Fertility
	disorders	-	

© 2009 Jack Vanden Heuvel

Sources: Lifespan Database Giguere, V. *Endocrine Rev.* 1999, *20*, 689-725 Willson, T. M.; Moore, J. T. *Mol. Endocrinology* 2002, *16*, 1135-1144

Nuclear Receptor Structure and DNA Binding

ER

Consensus binding sites for Nuclear Receptors (AGGTCA)

Which Nuclear Receptors are important for the normal function of reproductive tissues?

Tissue-specific concentration of ³H Estradiol

Elwood Jensen 1962

The concentration of radioactivity in immature rat tissues after a single s.c. injection of ³H estradiol.

Bookout *et al* **Cell** 126 789-799 (2006)

STEROIDOGENESIS

REPRODUCTION

& DEVELOPMENT

CNS, CIRCADIAN & BASAL METABOLISM

BILE ACID& XENOBIOTIC METABOLISM

LIPID METABOLISM &

ENERGY HOMEOSTASIS

The Mechanism of Nuclear Receptors Action

Following ligand binding NR dissociated from HSP complex, dimerizes and translocates to the nucleus.

Occurs for steroid receptors such as Androgen, Estrogen, Progesterone and Glucocorticoid Receptors (some receptor may be nuclear in absence of ligand).

The Mechanism of Nuclear Receptors Action

Nuclear receptors such as retinoic acid receptor, retinoid X receptor and thyroid hormone receptor are retained in the nucleus regardless of ligand availability.

Following ligand binding corepressors dissociate and coactivators bind to the NR.

Activation of target gene expression

Estrogen Response Element

Structure of the LBD

Molecular structures have been determined for the LBD's of many NR

12 α -helices (H1-H12) folded to form an " α -helical sandwich"

Helix 11 required in receptor dimerisation

Helices 3, 5, 6 and 11 form the ligand binding pocket

Ligand binding recruits LXXLL- motif containing coregulators to Nuclear Receptors

Transcription by Nuclear Receptors is determined by cofactor recruitment

Histone Deacetylase

Estrogen Response Element

Summary

The basic modular structure of a Nuclear Receptor includes DBD, LBD/AF2 and AF1.

The Nuclear Receptor Superfamily can be classified according to:

- 1) Ligand binding
- 2) DNA binding and dimerization
- 3) Expression Pattern

Ligands for NRs include steroids, fatty acids, pharmaceuticals, environmental chemicals.

The Nuclear Receptor DBD contains two Zinc Fingers and is the most highly conserved domain.

Activated Nuclear Receptors recruit coregulators to facilitate the regulation of target gene expression.

Further Reading

http://www.nursa.org/flash/gene/nuclearreceptor/start.html

<u>Crit Rev Biochem Mol Biol.</u> 2006 May-Jun;41(3):105-78.**The** general transcription machinery and general cofactors.<u>·Thomas MC</u>, <u>Chiang CM</u>.

Molecular Cell Biology. 4th ed. Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E.New York: <u>W. H. Freeman & Co.</u>; c2000.

Molecular Biology of the Cell 4th ed. Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter New York and London: <u>Garland Science</u>; c2002

The Cell - A Molecular Approach. 2nd ed. Cooper, Geoffrey M. Sunderland (MA): <u>Sinauer Associates, Inc;</u> c2000.