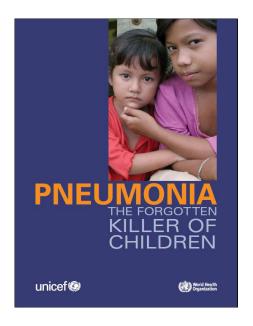
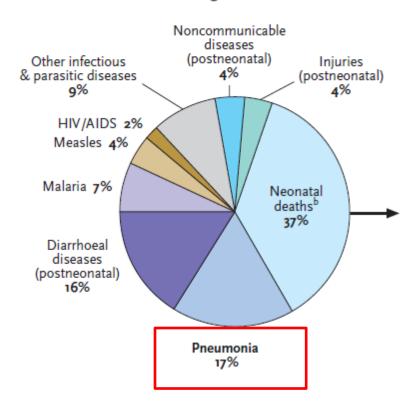

# CHILDHOOD PNEUMONIA: THE FORGOTTEN KILLER

Dr. Aran Singanayagam


Clinical Research Fellow Imperial College

### Respiratory infections in children




### CHILDHOOD PNEUMONIA – SCOPE OF THE PROBLEM

- Pneumonia kills more children than any other single illness
- 1 in 5 deaths in children under 5 years worldwide are attributable to pneumonia



#### Deaths among children under five



## Childhood pneumonia – a disease of the developing world

 Developing world: 151 million new episodes per year. 0.29 episodes per child-year.
 Mortality rate 1.3-2.6%

 Developed world: 4 million new episodes per year. 0.05 episodes per child-year. Negligible mortality.

#### **EPIDEMIOLOGY OF CHILDHOOD PNEUMONIA**

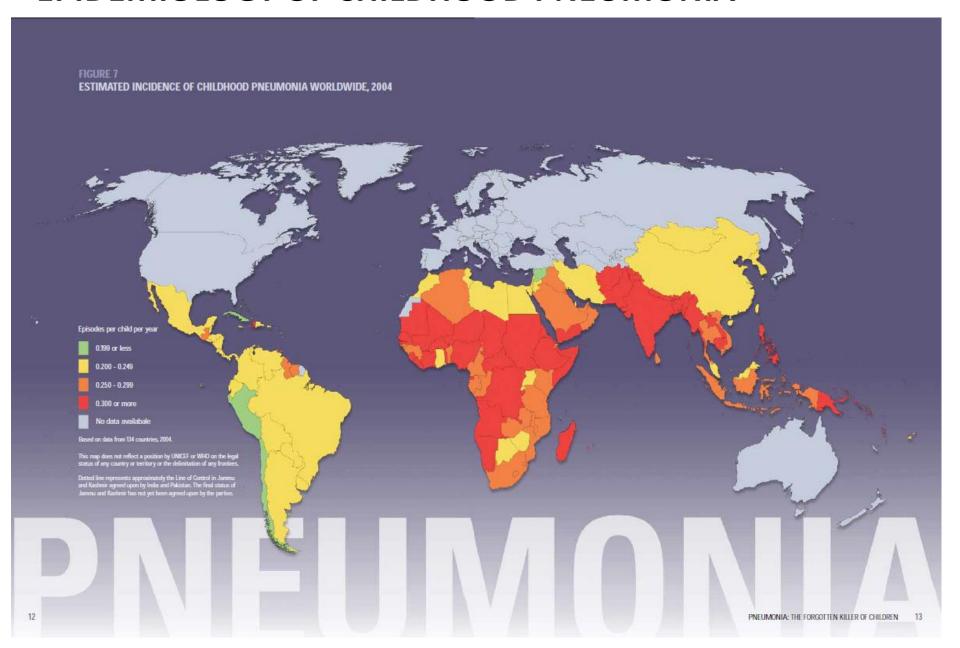
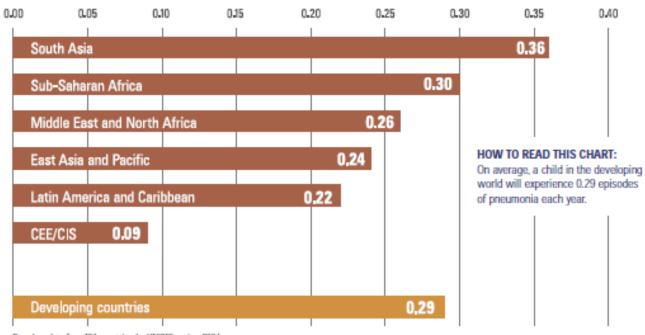




FIGURE 6
INCIDENCE OF PNEUMONIA IS HIGHEST IN SOUTH ASIA AND SUB-SAHARAN AFRICA

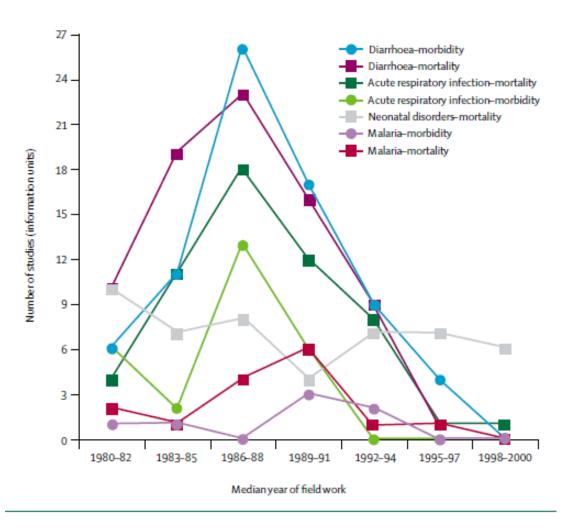
Episodes per child per year, by regions, 2004



Based on data from 134 countries, by UNICEF region, 2004.

## Why is pneumonia a bigger problem in the developing world?

- Malnutrition
- Over-Crowding
- Low birth weight
- Increased HIV/immunocompromised
- Lack of vaccination programme
- Poor maternal education
- Living in polluted areas
- Lack of efficient of heath care systems
- Lack of available antibiotics

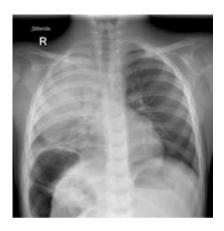

### The Forgotten Killer

 ~30,000 children under age of 5 years die every day worldwide from pneumonia

 Malaria, TB and HIV/AIDs have received global attention, despite only accounting for around 11% of all child deaths combined

Childhood pneumonia is responsible for 20% of deaths

### Decreasing trend in research publications on childhood pneumonia




#### Why has there been reduced interest?

- Interventions exist that were developed >2 decades ago
- These interventions not being delivered to children who need them most
- Programmes to deliver these interventions inadequately funded
- Expert opinion believes that failures to implement interventions may be applicable in the future to AIDS, TB or malaria

### Diagnosis of pneumonia and severity assessment

Developed countries: Chest radiograph



 Developing countries: limited radiographic availability => clinical symptoms and signs

### Severity assessment – developed and developing countries

**Table 1** Criteria used in developing and developed countries to define the severity of community-acquired pneumonia (CAP)

| Developing countries |                                                                                                                                                                                                                                                                  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Severe CAP           | In children with CAP diagnosed on the basis of fast<br>breathing and on possible evidence of lower respiratory<br>tract involvement, severe cases are identified in the<br>presence of cough or difficult breathing plus at least one of<br>the following signs: |
| Very severe CAP      | <ul> <li>lower chest wall indrawing</li> <li>nasal flaring</li> <li>grunting (in young infants)</li> <li>In children with a diagnosis of CAP or severe CAP, a diagnosis of very severe CAP is based on the presence of at least one of the following:</li> </ul> |
|                      | <ul> <li>central cyanosis</li> <li>inability to breastfeed or drink, or vomiting everything</li> <li>convulsions, lethargy or unconsciousness</li> <li>severe respiratory distress</li> </ul>                                                                    |

Developed countries

Severe CAP

Infants Temperature >38.5°C

Respiratory rate >70 breaths/min Moderate to severe recession

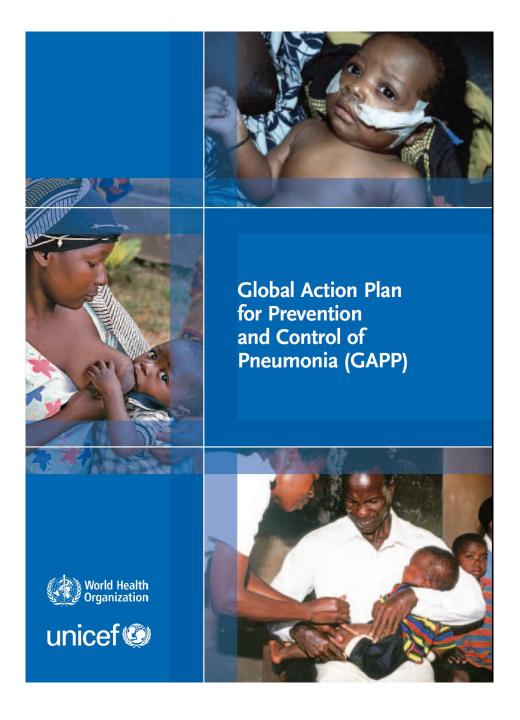
Nasal flaring Cyanosis

Grunting respiration

Not feeding Sao<sub>2</sub> < 92%

Older children Temperature >38.5°C

Respiratory rate >50 breaths/min Severe difficulty in breathing


Nasal flaring Cyanosis

Grunting respiration Signs of dehydration  $Sao_2 < 92\%$ 

Adapted from the World Health Organization<sup>11</sup> and the British Thoracic Society.<sup>7</sup> Sao<sub>2</sub>, arterial oxygen saturation.

#### Aetiology

- Bacteria: S.pneumoniae, H.influenzae type B and Staph Aureus
- S.pneumoniae important in HIV-infected and uninfected children
- Viruses: 30-40% of acute respiratory infections in hospitalised children. RSV predominates (20-25% of all viral resp infections)
- HIV: broader spectrum of pathogens including Gram-ves *E.Coli* and *Salmonella* spp. and *P.jirovecii*



### Reducing the Burden of Childhood pneumonia

GAPP outlined a 6 year worldwide scale-up of a set of interventions to control pneumonia:

- Protect children by providing an environment where they are at low risk of pneumonia.
- Prevent children from developing disease
- Treat children who become ill

### PROTECTION Interventions

### Breastfeeding

#### "Promote exclusive breastfeeding for 6 months"

•Protects against Pneumonia by passive protection (antibacterial and antiviral substances such as IgA, lactoferrin and cells (lymphocytes and neutrophils).

|                                         | Country and reference            |                  |               |
|-----------------------------------------|----------------------------------|------------------|---------------|
|                                         | Brazil (65)                      | Philippines (66) | Tanzania (67) |
| Cause of death                          | ALRI                             | ALRI             | ALRI          |
| Age (mo)                                | 0.25-11                          | 0-23             | 0-59          |
| Design                                  | Case-control                     | Cohort           | Case-control  |
| Sample size                             |                                  |                  |               |
| Number of children                      | 254 <sup>1</sup>                 | 9942             | $1160^{I}$    |
| Number of deaths                        | 127                              | 39               | 39            |
| Breast-feeding status                   |                                  |                  |               |
| Breast-fed                              | 1.0                              | 1.0              | 1.0           |
| Breast-fed + non-breast-fed             | 1.6 (0.7, 3.6) <sup>2</sup>      | _                | _             |
| Non-breast-fed                          | 3.6 (1.7, 7.5)                   | 1.05             | 1.7           |
| Breast-fed compared with non-breast-fed | 2.7                              | _                | _             |
| Comments                                | Adjusted for age and confounders | _                | _             |

<sup>&</sup>lt;sup>1</sup>Number of children in the control group.

<sup>&</sup>lt;sup>2</sup>95% CI in parentheses.

#### Nutrition

- Malnourished children have impaired immunologic response and consequently more severe infections.
- Protein-energy Malnutrition may affect nonspecific and antigen specific defence mechanisms. Thymic atrophy, T lymphocyte reduction.

Summary of community-based studies of mortality from acute lower respiratory infection (ALRI) and relative risks based on wieght-for-age z scores in children from Brazil, the Philippines, and the Gambia

|                                                | Country and reference    |                                        |                     |  |
|------------------------------------------------|--------------------------|----------------------------------------|---------------------|--|
|                                                | Brazil (49)              | Philippines (41)                       | Gambia (50)<br>ALRI |  |
| Cause of death                                 | ALRI                     | ALRI                                   |                     |  |
| Age (mo)                                       | 0.25-11                  | 0-23                                   | 0-23                |  |
| Design                                         | Case-control             | Cohort                                 | Case-control        |  |
| Sample size                                    |                          |                                        |                     |  |
| Number of children                             | 254 <sup>1</sup>         | 9942                                   | 2701                |  |
| Number of deaths                               | 127                      | 39                                     | 129                 |  |
| Relative risk based on weight-for-age z scores |                          |                                        |                     |  |
| >0                                             | 1.0                      | _                                      | _                   |  |
| 0  to  -0.9                                    | $4.0 (1.8, 9.3)^2$       | _                                      | _                   |  |
| -1 to -1.9                                     | 5.5 (2.2, 13.8)          | _                                      | _                   |  |
| ≤-2                                            | 21.5 (6.3, 73.6)         | _                                      | _                   |  |
| ≥0                                             |                          | 1.0                                    | _                   |  |
| -1                                             | _                        | 1.9                                    | _                   |  |
| -2                                             | _                        | 3.3                                    | _                   |  |
| -3                                             | _                        | 5.9                                    | _                   |  |
| ≥0.75                                          | _                        | _                                      | 1.5                 |  |
| -1.26 to 0.76                                  | _                        | _                                      | 0.2                 |  |
| -1.87 to -1.27                                 | _                        | _                                      | 0.8                 |  |
| ≤1.88                                          | _                        | _                                      | 1.0                 |  |
| Comments                                       | Adjusted for confounders | Calculated from linear fit of z scores | _                   |  |

<sup>&</sup>lt;sup>1</sup>Number of children in the control group.

<sup>&</sup>lt;sup>2</sup>95% CI in parentheses.

#### Indoor air pollution and pneumonia

- Household use of solid fuels (wood, animal dung, crop wastes and coal) is a potential modifiable risk-factor for pneumonia
- Solid fuels are the principal household fuel for 3 billion people worldwide and use closely linked to poverty
- Dherani et al 2008: Meta-analysis- overall pooled odds ratio of 1.78 (1.45-2.18) increased risk of pneumonia associated with solid fuel use

#### Possible Interventions

 Use of cleaner liquid fuels (kerosene/ethanol/liquefied petroleum gas)

 Better combustion ventilation through high quality biomass stoves

#### Hand washing

Handwashing may prevent the spread of acute respiratory infection – viruses are readily transmissible (pneumonia caused by viruses and secondary bacterial agents)

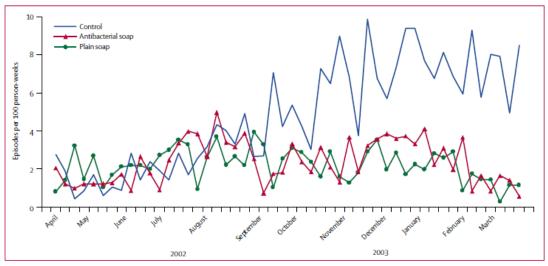
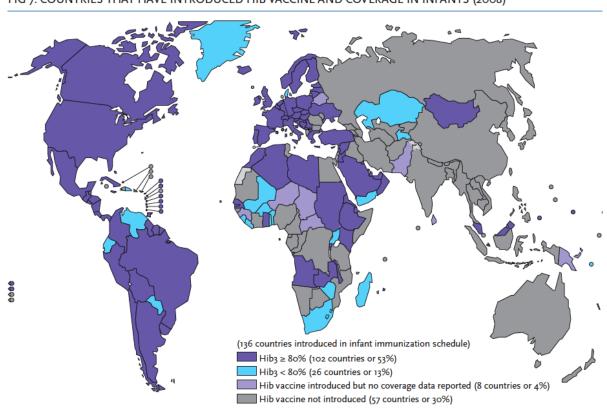



Figure 2: Incidence of pneumonia in children younger than 5 years

- 25 neighbourhoods in Karachi, Pakistan assigned to handwashing promotion; 11 neighbourhoods as controls.
- 300 households antibacterial soap, 300 plain soap.
- Fieldworkers visited households weekly for 1 year and encouraged handwashing


## PREVENTION strategies

#### Vaccination

- Global immunisation programmes have produced a decline in measles pneumonia and pertussis.
- Bacterial vaccines H.influenzae type B (Hib) and pneumococcal conjugate vaccines have great potential to substantially reduce childhood pneumonia
- Hib conjugate vaccine reduces Hib invasive disease by 46-93%.
- Pneumococcal vaccines: polysaccharide or conjugate.
   Polysaccharide ineffective in children<5 yrs; Conjugate effective from 6 weeks of age onwards</li>
- Expensive

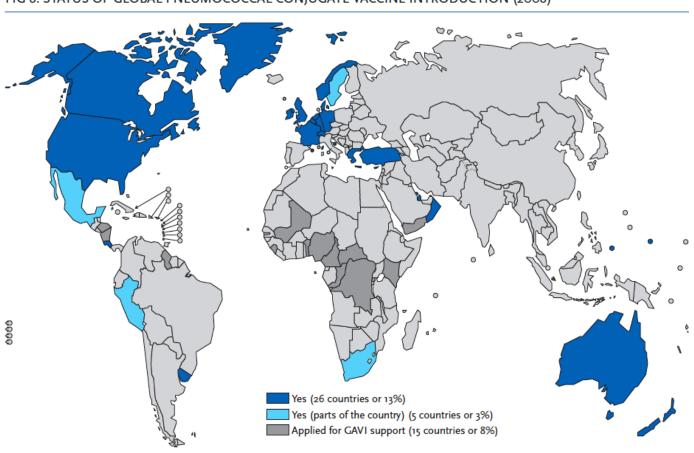

#### Worldwide HIB vaccine

FIG 7. COUNTRIES THAT HAVE INTRODUCED HIB VACCINE AND COVERAGE IN INFANTS (2008)



## Worldwide pneumococcal vaccination

FIG 8. STATUS OF GLOBAL PNEUMOCOCCAL CONJUGATE VACCINE INTRODUCTION (2008)



#### HIB Vaccine

| Doses  | Doses Pneumonia* |         | Meningitis Other |         |       | All     |       |         |
|--------|------------------|---------|------------------|---------|-------|---------|-------|---------|
|        | PRP-T            | Control | PRP-T            | Control | PRP-T | Control | PRP-T | Control |
| 0      | 0                | 1       | 3                | 1       | 0     | 0       | 3     | 2       |
| 1      | 2                | 4       | 3                | 4       | 0     | 1       | 5     | 9       |
| 2      | 0                | 5       | 0                | 4       | 1     | 1       | 1     | 10      |
| 3      | 0                | 5       | 1                | 12      | 0     | 2       | 1     | 19      |
| Total  | 2                | 15      | 7                | 21      | 1     | 4       | 10    | 40      |
| 2 or 3 | 0                | 10      | 1                | 16      | 1     | 3       | 2     | 29      |

<sup>\*</sup>Children with pneumonia which occurred in association with proven Hib meningitis were classified as meningitis.

#### Pneumococcal vaccine

| Table 4. Efficacy of the Vaccine against First Episodes of Radiologically |
|---------------------------------------------------------------------------|
| Confirmed Pneumonia.*                                                     |
|                                                                           |

| Variable              | Vaccinated<br>Group | Control<br>Group | P Value | Vaccine Efficacy<br>(95% CI) |  |
|-----------------------|---------------------|------------------|---------|------------------------------|--|
|                       | no. of episodes     |                  |         | %                            |  |
| HIV-negative children | 169                 | 212              | 0.03    | 20 (2 to 35)                 |  |
| HIV-positive children | 182                 | 209              | 0.19    | 13 (-7 to 29)                |  |
| All children          | 356                 | 428              | 0.01    | 17 (4 to 28)                 |  |

<sup>\*</sup> CI denotes confidence interval, and HIV human immunodeficiency virus.



### HIV prevention and treatment

- HIV pandemic has resulted in a large increase in incidence, severity and outcome of childhood pneumonia
- Impact compounded by poor access and unavailability of HAART.
- Interventions such as Cotrimoxazole prophylaxis have been targeted by the WHO for HIV-infected children to reduce burden of pneumonia

#### Zinc Supplementation



- Zinc deficiency widely prevalent in the developing world
- Proposed by some authors to hold promise as an intervention to reduce incidence and mortality
- Three trials to date all used daily dose 20mg zinc at onset of pneumonia.

Malhalanabus et al 2004: Zinc improved recovery from 'very ill' status and fever

**Brooks et al 2004**: Reduced duration of severe pneumonia and reduced hospitalisation

**Bose et al 2006**: Prolongation of pneumonia duration. No effect on severity parameters.

## TREATMENT strategies

#### Case management in community

- Major barrier in developing countries is lack of access to care.
- Improving management of suspected cases the community is an important objective
- Based on the premise that:
- a) High proportion of pneumonia is bacterial
- b) Timely antibiotic therapy reduces mortality
- c) A simple algorithm based on counting respiratory rates is sensitive for identifying children with pneumonia
- d) Health care workers can use this algorithm to provide antibiotics to children

| SIGNS                                                                                                         | CLASSIFY AS               | TREATMENT                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Fast breathing (see below)</li><li>Lower chest wall indrawing</li><li>Stridor in calm child</li></ul> | Severe pneumonia          | <ul> <li>Refer urgently to hospital for injectable antibiotics and oxygen if nee</li> <li>Give first dose of appropriate antibiotic</li> </ul>        |
| Fast breathing (see below)                                                                                    | Non-severe pneumonia      | <ul> <li>Prescribe appropriate antibiotic</li> <li>Advise mother on other supportive measures and when to return<br/>for a follow-up visit</li> </ul> |
| No fast breathing                                                                                             | Other respiratory illness | Advise mother on other supportive measures and when to return if symptoms persist or get worse                                                        |
| WHAT IS FAST BREATHING?                                                                                       |                           |                                                                                                                                                       |
| If the child is                                                                                               | The child has fast breath | ning if you count                                                                                                                                     |
| 2 months to 12 months old                                                                                     | 50 breaths or more per m  | • ,                                                                                                                                                   |
| 12 months to 5 years old                                                                                      | 40 breaths or more per m  |                                                                                                                                                       |

## Effect of improved case management

 Meta-analysis of 10 studies evaluating the impact of case-management on mortality from pneumonia Sazawal et al. Lancet Infect Dis 2003.

 Reduction in total mortality of 27% in neonates, 20% in infants and 24% in children

### Possible essay Question

"Outline reasons why childhood pneumonia kills more children in developing countries and discuss possible interventions/strategies that may address this health inequality"

#### **PROTECT**

children by providing a healthy environment

Exclusive breastfeeding for six months

Adequate nutrition
Prevent low birth weight
Reduce indoor air pollution
Hand washing

#### **PREVENT**

children becoming ill with pneumonia

Vaccination against measles, pertussis, Spn<sup>a</sup> and Hib<sup>b</sup>

Prevention of HIV in children

Cotrimoxazole prophylaxis for HIV-infected and exposed children

Zinc supplementation for children with diarrhoea

REDUCE PNEUMONIA MORTALITY AND MORBIDITY

#### **TREAT**

children who become ill with pneumonia

Case management in community, health centre and hospital

- Streptococcus pneumoniae.
- b Haemophilus influenzae b.