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Molecular targets of general anaesthetics
Modern surgery would be impossible without the use of general anaesthetics, a diverse group of agents ranging from the inert gas xenon to complex barbiturates and steroids.  How these agents produce reversible loss of consciousness in the surgical patient remains a mystery, but considerable progress has recently been made in understanding how they act at the molecular level.  

The apparent lack of specificity of general anaesthetics, unusual among drugs, plus observations that potency correlates with solubility in fat-like solvents (the Meyer-Overton Rule), caused early workers to suppose that anaesthetics act directly on lipids (the Meyer-Overton Hypothesis).  This hypothesis was later extended by postulating that anaesthetic-induced changes in lipid structure and dynamics produce general anaesthesia by disrupting the activity of critical proteins such as membrane ion channels.  

However, quantitative studies over the past 25 years have shown that, at surgical levels, anaesthetic effects on lipid bilayers are extremely small.  Moreover, certain lipid-free proteins have been shown to be directly affected by a wide range of anaesthetics, with potencies essentially identical to those for general anaesthesia.  Finally, studies with optical isomers of general anaesthetics have revealed stereo-selective effects both on whole animals and on anaesthetic-sensitive neuronal ion channels.  Taken together, these findings indicate that general anaesthetics produce their effects at surgical levels by binding directly to proteins rather than to lipids.  

Although general anaesthetics are non-specific in the sense that they come in diverse shapes and sizes with no common chemical groupings, their actions on neurons and their ion channels can be surprisingly specific.  For example, it has long been known that, in general, synaptic transmission is more susceptible to anaesthetic block than is conduction along axons.  Consistent with this observation, the voltage-gated Na+ and K+ channels involved in axonal conductance appear to be insensitive to general anaesthetics.  On the other hand, members of a genetically related superfamily of fast neurotransmitter-gated synaptic receptor channels (which include neuronal nicotinic ACh, GABAA, 5‑HT3, and glycine receptors) can be very sensitive to anaesthetics, and the mechanisms involved are beginning to be understood.  Recent work suggests that some anaesthetics, including the noble gas xenon, may act on the NMDA subtype of glutamate receptors.
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