Senescence in normal and cancer cells

Jesús Gil

Introduction to senescence and the molecular mechanisms controlling it.

Senescence is an irreversible growth arrest

Senescence comes in different flavours: Oncogene-Induced Senescence

Cell, Vol. 88, 593-602, March 7, 1997, Copyright ©1997 by Cell Press

Oncogenic *ras* Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16^{INK4a}

Manuel Serrano

Senescence is a potent tumor suppressor mechanism

Senescence and its physiological relevance

"HAYFLICK" factors limit cell proliferation

Manuel Collado, María Blasco and Manuel Serrano Cell 2007

How do cells count their divisions?

Telomerase and senescence

Passage

Harley, Futcher & Greider, *Nature* (1990)

How do cells count their divisions?

The INK4b-ARF-INK4a locus

Transcriptional control of the INK4a/ARF locus

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

ARF activates p53

Copyright @ 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

Regulation of cell cycle by p16^{INK4a}

Copyright D 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

How do cells count their divisions?

Telomere uncapping activates the DNA damage pathway

Activation of p53 during senescence

Relevance of senescence for cancer and aging

Telomerase and aging

age

premature aging syndromes

Ataxia telangiectasia (ATM) Werner syndrome (WRN) Bloom syndrome (BLM) Dyskeratosis congenica (DKC1, Terc) Aplastic anemia (Terc, Tert) Fanconi anemia (Fanc genes) Nijmegen breakage syndrome (Nbs)

Telomerase limits life

Harley, Futcher & Greider, *Nature* (1990)

Ink4a/Arf expression is a biomarker of aging

Janakiraman Krishnamurthy,' Chad Torrice,' Matthew R. Ramsey,' Grigoriy I. Kovalev,² Khalid Al-Regaley,² Lishan Su,² and Norman E. Sharpless³

Increase in replicative senescence during aging

The relation between stem cells, senescence and aging

• Bmi1 KO mice have defects in stem cell selfrenewal, partially due to deregulated *Ink4a/Arf.*

The main tumor suppresor pathways are involved in senescence

senescence = tumor suppression ?

Adapted from Campisi, J. Cell Vol 120, Issue 4, 25 February 2005, Pages 513-522

Telomerase and cancer

age

senescence = tumor suppression ?

Harley, Futcher & Greider, *Nature* (1990)

Tumor suppresor mechanisms

In vivo?

"c- Myc activation in vivo induces apoptosis"

"And apoptosis is a tumor suppressor mechanism"

c-MycER^{TAM} x BclXL-KO = ^{↑↑↑} tumors

Stella Pelengaris and Gerard Evan Cell 2002

Oncogene-induced senescence is a barrier for cancer progression

Nature (2005). 436

		·		,	

Lesion	Study					
Human melanocytic nevi	Michaloglou et al., 2005; Gray-Schopfer et al., 2006					
Murine lung adenomas	Collado et al., 2005; Dankort et al., 2007					
Human dermal neurofibromas	Courtis-Cox et al., 2006					
Human and murine prostate PIN lesions	Chen et al., 2005					
Murine pancreatic intraductal neoplasias	Collado et al., 2005					
Murine papillomas	Collado et al., 2005					
Murine lymphomas	Braig. et al., 2005					
Early murine melanomas	Ha et al., 2007					

Mouse models show a role for p53 in aging

Nature Reviews | Molecular Cell Biology

What we do in our lab?

Senescence can be exploited to identify novel cancer genes in vitro

Unveiling novel regulators of senescence using genetic screenings

Genetic screens for lifespan extension

Genetic screens for bypass of replicative senescence

CXCR2 signaling

Senescence ?

CXCR2 depletion impairs the activation of the DNA damage response

Coordinated upregulation of CXCR2 and its ligands in senescence

Upregulation of CXCR2 in senescent premalignant lesions

A/N glands

DMBA/TPA: skin papillomas

- Premalignant lesions
- 100 % Activating H-Ras mutations

Collado et al. Nature (2005)

Prostate intraepithelial neoplasia (PIN)

- Premalignant lesions
- Precursor of prostate cancer (Pca)

Chen et al. Nature (2005)

CXCR2

In which other context is senescence relevant?

Induced pluripotent stem cells: the Yamanaka factors

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi¹ and Shinya Yamanaka^{1,2,*} ¹Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan ²CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan ^{*}Contact: yamanaka@frontier.kyoto-u.ac.jp DOI 10.1016/j.cell.2006.07.024

Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors

Kazutoshi Takahashi,¹ Koji Tanabe,¹ Mari Ohnuki,¹ Megumi Narita,^{1,2} Tomoko Ichisaka,^{1,2} Kiichiro Tomoda,³ and Shinya Yamanaka^{1,2,3,4,*} ¹Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

²CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan ³Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA ⁴Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan ^{*}Correspondence: yamanaka@frontier.kyoto-u.ac.jp DOI 10.1016/j.cell.2007.11.019

MEFs

iPS-MEF4-7

IPS (Induced Pluripotent Stem) Cells

Reprogramming: complex, slow, inefficient and dangerous

- **Complex** involves several steps, including chromatin modifications and global expression patterns alterations
- Inefficient and slow, has to overcome several barriers
- The mechanisms behind the switch to pluripontency/self-renewal remain mostly unknown

Expression of reprogramming factors induces senescence

Reprogramming factors cause growth arrest

Induction of effectors of senescence

Chromatin remodeling of the *Ink4a/Arf* locus during reprogramming

Pluripotency-related miRNAS inhibit senescence

Low expression of pluripotency-related miRNAs in cells suffering RIS

Partial bypass of senescence by forced expression of miR-302

Regulation of p21 by miR-302

Banito et al. Genes & Dev., 2009

Parallels between oncogene and reprogramming-induced senescence

Senescence disabled

Inhibition of senescence increases reprogramming efficiency

Knocking down senescence effectors with shRNA

Increase in reprogramming efficiency

Banito et al. Genes & Dev., 2009

Senescence and its physiological relevance

http://cellpro.csc.mrc.ac.uk

We are funded by:

Collaborators

David Bernard CNRS, Lille

Gordon Peters lab (Emma Anderton) LRI London

Martin Walsh lab (SiDe Li) Mount Sinai, NY

Eva Hernando/J. Melamed NYU

Fabrizio d' Adda di Fagagna (M Fumagalli) IFOM, Milan

Mariano Barbacid/Carmen Guerra CNIO, Madrid