

An introduction to statistical methods for analysing clinical data

Tony Brady

Reference books

- Altman DG. Practical Statistics for Medical Research
- Bland JM. *An Introduction to Medical Statistics*

Clinical trials

- Methods suitable for analysing clinical trial data
- Parallel design usually 2 groups, one group 'placebo' or control, other group 'active' or experimental
- Patients are randomly allocated to the two groups to avoid bias
- Not going to cover methods specific to crossover trials, laboratory experiments or non-randomised studies

Outcome measure

- Primary outcome of trial should be predefined in protocol
- Appropriate analysis depends on type of outcome
- Main analysis to be performed should also be predefined before outcome data is seen

Types of outcome

- Continuous blood pressure, length of hospital stay, number of asthma attacks
- Categorical presence/absence of ulcer, vital status, Rankin scale: 0 (no symptoms) to 5 (severe disability) and 6 (death)
- Time to event survival time, time to cancer progression, time to relapse

Continuous outcomes

- Example: trial of placebo vs. beta-blockade to lower blood pressure in women
- Sample of 62 women in trial (30 placebo and 32 beta-blockade)
- Outcome is systolic blood pressure (continuous)

Two-sample t-test (1)

- Compare mean of X in group 1 with mean of X in group 2
- Null hypothesis is that there is no difference between the means in each group
- Example:
 - mean systolic blood pressure (SBP) in placebo group was 165mmHg, SD=26
 - mean SBP in beta-blocker group was 143mmHg, SD=24
 - Is there evidence that the beta-blocker group had different average SBP?

Simulation

- Two groups
- Population outcome in group 1 has Normal distribution with mean = 100, SD=60
- Population outcome in group 2 has Normal distribution with mean = 200, SD=60
- Take samples of size N=100 from each group (so N=200 in total)

Confidence intervals (2)

• Example

- mean SBP was 22mmHg lower in beta-blocker group compared to placebo group
- Standard error was 6.35, t_{0.975} on 60 *d.f.*=2.00
- -95% CI: 22 ± (2.00 x 6.35)
- which is 9.3mmHg to 34.7mmHg
- "We are 95% certain that the true treatment effect lies in the range 9.3 to 34.7mmHg"

One sample t-test

- Used to compare the mean of a random variable with a fixed value
- e.g. are the trial participants representative of women in general population?
- Compare average age & weight in sample with population averages

One sample t-test (1)

- Compare mean of X with hypothesized value
- Example:
 - mean weight in sample, 51.3 kg, SD=16.3
 - mean weight in population 48.7 kg
 - Are the women in our sample heavier, on average, than women generally?

One sample t-test (2)

- From statistical tables, t=1.24 on 61 *d.f.* gives P=0.22
- There is little evidence that the women in our sample differ from women generally in weight

Assumptions

- The outcome is approximately normally distributed
- Non-parametric equivalent to one sample ttest is sign test

Paired t-test

- Two-sample t-test assumes groups are independent
- This won't be true if comparison is within the same patient
- Example:
 does dietary intake change over the course of the betablockade trial?
 - Intake measured at baseline and end of the trial in each woman

1	52(0	(110	1150
1	5260	6410	-1150
2	5610	5520	90
3	7810	8230	-420
4	4570	4335	235
5	6190	5220	970
Mean	5486.2	5251.7	234.5
SD	1158.3	1296.7	322.4

More than 2 groups

- How do you analyse 3 arm trial (A vs. B vs. C)?
- Inefficient to use two sample t-tests for A vs. B and A vs. C
- Solution is to use one way analysis of variance (ANOVA)
- ANOVA with only 2 groups is identical to two sample t-test

Categorical outcomes

Trial of infra-red stimulation (IRS) vs. placebo for pain caused by cervical osteoarthrosis

Improvement Yes 9 4 13 in pain No 3 9 12 Total 12 13 25 S $p_1 = 9/12 = 0.75$				IRS	Placebo	Total
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Improvement		Yes	9	4	13
S $p_1 = 9/12 = 0.75$	in pain		No	3	9	12
.S $p_1 = 9/12 = 0.75$			Total	12	13	25
	S	$p_1^{=}$	= 9/12	= 0.7	75	

CI for difference in proportion

- $p_1 p_2 = 0.44$
- $SE(p_1 p_2) = 0.18$
- 95% CI is 0.44 ± (1.96 x 0.18)
- which is 0.09 to 0.79

"We are 95% certain that the true difference in proportion lies between 0.09 and 0.79"

Chi-squared test

- Used to test for differences in proportion between 2 or more groups
- Calculate expected frequencies under the null hypothesis (that the outcome variable and group variable are unrelated)
- Not valid if <80% of expected frequencies <5, in this case use Fisher's exact test

		IRS	Placebo	Total
Improvement	Yes	9	4	13
in pain	No	3	9	12
	Total	12	13	25
P(pain=yes) :	= 13/25	= 0.52	(pain=y	es) & IRS
P(pain=yes)	= 13/25	= 0.52	(pain=y	es) & IRS
P(pain=yes) = P(IRS) = 12/2	= 13/25 25 = 0.4	= 0.52 8	(pain=y = 0.52 x	es) & IRS : 0.48 x 25 = 6.24
P(pain=yes) = P(IRS) = 12/ Expected, E:	= 13/25 25 = 0.4	= 0.52 8	(pain=y = 0.52 x	es) & IRS $0.48 \ge 25 = 6.24$
P(pain=yes) = P(IRS) = 12/2 Expected, E:	= 13/25 25 = 0.4	= 0.52 8 IRS	(pain=y = 0.52 x Placebo	es) & IRS 0.48 x 25 = 6.24 Total
P(pain=yes) = P(IRS) = 12/ Expected, E: Improvement	= 13/25 25 = 0.4 Yes	= 0.52 8 IRS 6.24	(pain=y) $= 0.52 x$ Placebo 6.76	es) & IRS $0.48 \times 25 = 6.24$ Total 13
P(pain=yes) = P(IRS) = 12/ Expected, E: Improvement in pain	= 13/25 25 = 0.4 Yes No	= 0.52 8 IRS 6.24 5.76	(pain=y = 0.52 x Placebo 6.76 6.24	$\frac{13}{12}$ tess k IRS $\frac{13}{12}$

		IRS	Placebo
Improvement	Yes	1.22	1.13
in pain	No	1.32	1.22

Chi-squared statistic, X^2 is sum of $(O-E)^2/E = 4.89$

on (no. rows-1) x (no. columns-1) *d.f.*

 $= (2-1) \times (2-1) = 1 d.f.$

P=0.03 from tables

P=0.05 from Fisher's exact test

Measures of treatment effect

p₁=0.75, p₂=0.31

- Difference in proportion, $p_1 p_2 = 0.44$
- Relative risk, $p_1/p_2 = 2.4$
- Odds ratio, $[p_1/(1-p_1)] / [p_2/(1-p_2)] = 6.7$
- Number needed to treat (NNT) = $1/(p_1 p_2)$ = 2.3
 - "Need to treat 2.3 patients to prevent 1 pain"

Odds ratio

- Odds ratio tends to be larger than relative risk unless p_1 and p_2 are small (<0.1)
- Can be estimated using logistic regression
- Logistic regression can be extended to incorporate baseline factors such as age, sex etc
- *Adjusted* treatment effect odds ratio can be estimated from this model

Summary		
Aim	Test	
Compare mean with hypothesized value	One sample t-test	
Compare means in two independent groups	Two sample t-test	
Compare means in >2 independent groups	ANOVA	
Compare means before/after in same group	Paired t-test (=one sample t-test on differences)	
Compare proportions in 2 or more independent groups	Chi-squared test	