Imperial College London

Introduction The immune system

Peter Openshaw

Centre for Respiratory Infection p.openshaw@imperial.ac.uk

http://www.youtube.com/watch?v=yz4lFeqJPdU&feature=related http://www.aimediaserver.com/studiodaily/harvard/harvard.swf

What is **Immunity**?

Immunitas: (from Latin) exemption from military service, civic duties and prosecution

Protection from infection

Immune response = reaction to a threat (or antigen)

Immune system = cells and molecules leading to protection

What is the immune system for?

To defend against:

Viruses

Bacteria

🖵 Fungi

Parasites

Has to detect and react to dangerous things <u>not</u> the <u>safe but foreign</u>

The microbial world

- Seawater has 10⁶ bacteria and 10⁷ viruses/ml
- Atmosphere contains ~1,000,000,000
 Tonnes of particles
- Indoor air has 400-900 bacteria/m³
- We inhale a potentially lethal pathogen every 7 seconds (10,000/d)
- Our bacteria outnumber our cells 10:1

Childhood lung infections: 'A permanent global emergency' Kim Mulholland Lancet 2007

Lung Infection— A Public Health Priority Mizgerd JP (2006) PLoS Med 3(2): e76

Modes of Transmission

Respiratory

GI tract

Surface defences against infections

- Coughing
- Sneezing
- Mucus
- Cilia
- Rapid cell turnover

Death: the first and last barrier

Dead already

Soon to

die

General Surface defences

• Mechanical:

Epithelial tight junctions Skin waterproofed by fatty secretions Social conditioning (e.g. washing)

• Chemical:

Fatty acids (skin) Enzymes: Iysozyme (saliva, sweat and tears), pepsin (gut) Low pH (stomach, sweat) Antibacterial peptides (Paneth cells in intestine)

• Microbiological:

Normal flora compete for nutrients/attachment sites Production of antibacterial substances

The sequential actions of the immune system

Pre-infection	Early infection	Late infection
'first line'	'second line'	'specific'
avoicance smell taste mucus physical barriers surface environment	pnagocytes opsonins some lymphocytes interferons acute phase proteins Toll-like receptors	T cells antibody
68	KER	
RAN	A & X	

The sequential actions of the immune system

Pre-infection	Early infection	Late infection
'first line'	'second line'	'specific'
avoidance	phagocytes	
smell	opsonins	T cells
mucus	interferons	antibody
physical barriers	acute phase proteins	
surface environment	Toll-like receptors	
	specificity	
	breadth	
	learning	

Phagocytes

•Cells that engulf invaders

•Antigen is destroyed in intracellular vesicles

Neutrophil chasing bacteria

From 16mm movie, 1950s by David Rogers, Vanderbilt University

Virus recognition pathways

Interferons

TYPE I/III: $\alpha/\beta/\lambda$

- activates NK cells
- upregulates MHC, Mx proteins
- activates RNase L, PKR
- induces anti-viral state

TYPE II: IFN γ

- proinflammatory
- Th1 cytokine
- "immune interferon"

Inflammatory mediators, chemokines and cells in epithelial infection

Natural Killer Cells

- •NK cells kill host cells that are:
 - Infected
 - Transformed
 - 'Stressed'
- Important in viral infections.
 - Viruses evade NK cell killing
 - NK deficiency leads to increased infections
- •Important early source of cytokines
- •Shape adaptive immune responses

The acquired immune system Two main types of lymphocyte

Hieronymus Fabricius (Girolamo Fabrici) 1537-1619 'The Father of Embryology'

Bone marrow in mammals, Bursa of Fabricius (chickens)

Arise in the bone marrow but mature in the Thymus

B cells express/secrete antibody

•There are 10¹⁴ potential different antibodies (VDJ combinations)

•Each antibody recognises one specific shape/charge combination

•Each B cell expresses one unique antibody

ANTIBODY

Georges Kohler & Cesar Milstein. Nature (1975) 256: 495-7

What antibody does

Summary: antibodies

- 1. Made by B cells
- 2. Bind antigen
- 3. Cell membrane bound/secreted
- 4. Enhances phagocytes (opsonisation)
- 5. Recruits other toxic molecules/cells

T cells and their receptors (TcR)

MHC: major histocompatibility complex

The Class I - Cytotoxic T cell system

Helper T cells do not recognise native antigen but PROCESSED antigen

Antigen is engulfed by professional antigen presenting cells (APCs) and processed into peptides

These cells engulf antigens and **PRESENT** them to T cells

The class II - Helper T cell system

Mucosal defences

- 1. Mannan binding proteins
- 2. Antimicrobial peptides
- 3. Enzymes (e.g. lysozyme)
- 4. Mucosal lymphocytes
- 5. Secretory IgA
- 6. Special antigen sampling
 - Waldeyer's ring
 - Peyer's patches
 - Dendritic cell networks

Balance Tolerance vs. Attack

Defences against bacteria

- Surface defences (mechanical and chemical)
- Antibody opsonisation
- **Complement** (alternative pathway) causing lysis/opsonisation
- Phagocytosis
- Release of inflammatory mediators and acute phase proteins (also opsonins) etc.
- Fever

Defences against viruses

- Surface defences
- Interferons
- Inflammatory mediators and acute phase proteins/opsonins *etc.*
- NK cells
- Antibody, complement, ADCC
- T cells

The spectrum of activation and regulation

Inflammation is tightly regulated

How infection causes disease (1)

How infection causes disease (2)

How infection causes disease (3)

"Three million children die each year in poor countries from diseases that can be prevented by vaccination"

(World Bank, 1999)

Immunity

<u>Win</u>

~ Defence against infection

Wealth, social stability