Molecular Aspects of Cystic Fibrosis

Dr Uta Griesenbach (Reader in Molecular Medicine)
u.griesenbach@imperial.ac.uk

Module 2: Molecular Cell Biology of the Lung

Learning Objectives

- 1. CF Genetics
- 2. Classes of CFTR mutations
- 3. Other factors affecting disease
- 4. Mutation specific treatments
- 5. (Animal models)

Normal

CF Pathophysiology

CFTR gene defect **Defective ion transport** Airway surface liquid depletion **Defective mucociliary clearance Mucus obstruction** Infection **Inflammation**

Autosomal Recessive Disease

Ethnic Background	Risk of CF Mutation	Risk of Child with CF
Caucasian	1 in 29	1 in 3300
Ashkenazi Jewish	1 in 29	1 in 3300
Hispanic	1 in 46	1 in 8000-9000
African- American	1 in 65	1 in 15,300
Asian	1 in 90	1 in 32,100

Heterozygote Advantage

Examples:

1547 mutations currently identified

Mutation Type	Frequency %
Missense	42
Frameshift	16
Splicing	13
Nonsense	10
In frame in/del	2
Large in/del	3
Promotor	0.5
Sequence variation	13.5

Varying levels of residual CFTR function

ΔF508 Mutation

Frame-shift (exon 10)

ΔF508 mutation

CFTR Mutations Fall Into Five Functionally Separable Classes

Molecular Consequences of CFTR Mutations

△F508

Pancreas disease

I, II, III = severe mutation
IV, V = mild mutation

Causasian Population

Ashkinazi Jews

Mutation	Prevalence (%)
DF508	79
G551D	2.17
R117H	0.7
621+1 (G>T)	0.5
G542X	0.5
N1303K	0.35
1717-1 (G>T)	0.28
R1162X	0.14
R553X	0.14
3849+10KB (G>T)	0.07
R334W	0.07
W1282X	0.07
TOTAL	84

DF508 27%

W1282X 51%

All other mutations << 0.05%

Therapeutic Approaches by Class

F508del CFTR
Processing Corrector

CFTR Potentiators

Translational Readthrough

adapted from Rowe et al

Normal Flow of Genetic Information Results in Full-Length Protein Production

Normal Translation

Nonsense Mutation Halts the Flow of Genetic Information and Results in Truncated Protein Production

PTC124 Has Been Designed to Overcome Nonsense Mutations

Overcoming Class II mutations:

Defective Processing (Delta F508)

Overcoming Class III+IV mutations:

Defective Conductance and Regulation

Potentiators ie VX770 in patients with G551D mutations

Sweat Chloride Change from Baseline

Individual subject response with population mean/median

^{*} P < 0.001 within-group and vs. placebo † P < 0.05 within-group and vs. placebo

Relative Change in FEV₁ % pred

*P < 0.01 within-subject †P < 0.05 within-subject

Improving Ion Transport

It's Not Just CFTR

*Calcium activated chloride channel

Genotype/Phenotype Correlation

Pancreas

Lung

HOST DEFENCE

Neutrophil function
Defensins
Innate immune proteins
Cytokines
Anti-oxidants

ION CHANNELS ENaC Ca++ mediated Cl-

Putative Modifiers

AIRWAY FUNCTION
MUC genes
β₂ adrenergic receptors

CFTR FUNCTION
Chaperones
CFTR polymorphisms

CFTR Interactome

Modifier Gene Studies

- Many studies done
- Often small numbers (10s)
- Often not reproducible
- More recently larger studies (1000s)

Candidate gene approach
Genome wide screening/sequencing

Epithelial Sodium Channel (ENaC)

Mutations in the beta-subunit of the epithelial Na⁺ channel in patients with a cystic fibrosis-like syndrome

Molly B. Sheridan¹, Peying Fong², Joshua D. Groman¹, Carol Conrad³, Patrick Flume⁴, Ruben Diaz⁵, Christopher Harris⁶, Michael Knowles⁷ and Garry R. Cutting^{1,*}

2 patients with CF-like disease No CFTR mutations

Causes of Variability in Outcomes

Best FEV₁ % Predicted per Year in a MZ Pair

Animal Models

CF knockout mice

- gut, but not lung disease
- alternative chloride channel in lung

Lung disease

Summary

- Mutant CFTR affects ion and fluid transport across the epithelial membrane, which impairs mucociliary clearance and encourage bacterial colonization of the airways.
- Genetics of CF are complicated (>1500 mutations identified)
- Understand of the genetics has contributed to development of mutation specific treatments
- In addition to mutant CFTR, environmental factors and genetic modifiers also contribute to the pathophysiology of CF disease.

Recommended Reading

Cystic fibrosis: Exploiting its genetic basis in the hunt for new therapies, James L. Kreindler Pharmacol Ther. 2010

Update in Cystic Fibrosis 2010 Am J Respir Crit Care Med.

Peter J. Mogayzel, Jr. and Patrick A. Flume

Pharmacological therapy for CF: From bench to bedside, Becq F et al, Journal of CF 2011

CF Discussion (Nov 17)

4 groups

6/group

1 paper/group + questions

Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth.

Stoltz DA, Meyerholz DK et al Sci Transl Med. 2010 Apr 28;2(29):29ra31.

Questions:

discuss content of the paper:

- 1. How well does the pig model mimic human CF disease?
- 2. How does the characteristic CF lung pathology develop in the pig?
- 3. What comes first infection or inflammation and why is it important to know this?

Hartl D et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med. 2007 Dec;13(12):1423-30.

Questions:

discuss content of the paper:

- 1. Why do the results presented in the paper stimulated interesting discussion about CF pathophysiology?
- 2. Briefly discuss novel treatment approaches that may arise from this study

European best practice guidelines for cystic fibrosis neonatal screening. Castellani C et al

J Cyst Fibros. 2009 May;8(3):153-73.

Questions:

discuss content of the paper:

- 1. What is the current state of newborn screening for CF in the UK? What tests are used?
- 2. What are the advantages of screening?
- 3. Are there disadvantages?

Gender differences in the Scandinavian cystic fibrosis population.

Olesen HV, Pressler T, Hjelte L, Mared L, Lindblad A, Knudsen PK, Laerum BN, Johannesson M; Scandinavian **Cystic Fibrosis** Study Consortium.

Pediatr Pulmonol. 2010 Oct;45(10):959-65.

Questions:

Discuss content of the paper:

- 1. Evidence for and against gender gap?
- 2. What might explain the gender gap?
- 3. What might be done to close the gender gap?