Neural Control of the Lung

Maria G. Belvisi

Respiratory Pharmacology Group, Faculty of Medicine, Imperial College London, NHLI, London, UK.

<u>m.belvisi@imperial.ac.uk</u>

http://www.irpharma.co.uk/

Innervation of the Respiratory Tract

Muscarinic Receptor Subtypes in the Airways

Muscarinic Autoreceptor Dysfunction in Asthma?

Parasympathetic nerve

i-NANC Relaxations of Human Trachea: Role for NO

Immunocytochemistry

Belvisi M et al: Eur. J. Pharmacol 1992; J Appl Physiol 1992

The Cough Reflex

Adapted from Taylor-Clark & Undem 2006

COUGH AS A MAJOR UNMET MEDICAL NEED

- Commonest symptom for medical consultation
- Chronic cough: 10-38% of pulmonary out-patients
- No effective therapy apart from opiates

Capsaicin Excitation of C-fibres

Fox et al 1993. J. Physiol. 460, 21-35

$A\delta$ -fibre Activation

Fox et al 1993. J. Physiol. 482, 179-187

Isolated Vagus Nerve

2min

Cough Model

Calcium imaging of vagal sensory neurones

Time

Calcium imaging: Prostaglandin E₂

Jugular ganglion

Nodose ganglion

Calcium imaging: Bradykinin

Jugular ganglion

Nodose ganglion

Sensory nerve activation and cough elicited by endogenous tussive agents

Vagus BK vs Antagonists

BK vs Indomethacin

Guinea Pig: BK vs B1 & B2 antagonists

Mouse: BK vs B1 & B2 antagonists

Mouse: B1 agonist

Sensory nerve activation: which prostanoid receptor?

EFFECT OF CAPSAZEPINE ON COUGH

Conscious guinea pigs

Lalloo, Fox, Belvisi, Chung, Barnes J Appl Physiol 1995, 79(4):1082-7.

Coexpression of TRP channels in lung-labelled airway neurons

 \bigcirc

0

Nassenstein et al., J Physiol 2008

MUSTARD OIL ACTIVATES VAGAL C-FIBERS IN THE GUINEA PIG LUNGS

MUSTARD OIL AITC 30 µM

Nassenstein et al., J Physiol 2008

TRPA1 Ligands induce cough in conscious guinea-pig model and in normal volunteers

Birrell et al., 2009, Am J Respir Crit Care Med. 180(11):1042-7. Andre et al., 2009, Br. J. Pharmacol, 158: 1621-1628.

Effect of TRP antagonists on sensory nerve activation/cough

Effect of TRP antagonists on sensory nerve activation/cough elicited by PGE₂

Effect of TRP antagonists on sensory nerve activation/cough elicited by bradykinin

Effect of TRP antagonists on human sensory nerve activation elicited by PGE₂ and BK A. PGE₂ B. Bradykinin

HC-030031

JNJ17203212

HC+JNJ

Scale: 0.05 mV L_ 2 min

Tussive agents, sensory nerves and signalling pathways

C-fibre Sensitisation by Bradykinin

Fox et al 1996. Nature Med. 2, 814-8

Bradykinin Sensitises the Cough Reflex

Fox et al 1996. Nature Med. 2, 814-8

Effect of sensory nerve stimulants on isolated vagus nerve from allergen sensitised and challenged mice saline Ag

4 min

MAST CELLS AND NERVE GROWTH FACTOR

EFFECT OF NGF ON COUGH

Conscious guinea pigs (n=6) *Citric acid-induced cough (citric acid 0.35M x 10 min)*

Guinea pig vagus nerve in vitro

🛛 Vehicle 🔛 NGF 100µg/kg

Neurotrophins, humans, allergy and asthma

Models of enhanced cough

OVA inhalation induces LAR in sensitised rodents: Effect clinically relevant compounds

Brown Norway Rat

C57 BL/6J mice

LAR is attenuated by a non-specific sensory nerve blocker (ruthenium red)

Brown Norway Rat

C57 BL/6J mice

- OVA/Vehicle
- OVA/Ruthenium red (2 mg/kg, i.p.)
- Saline/Vehicle

LAR is attenuated by TRPA1 inhibitor (HC-030031) but not TRPV1 inhibitor (JNJ-17203212) in the BN rat

- Saline/Vehicle

OVA/HC-030031 (100 mg/kg, i.p.) OVA/JNJ-17203212 (100 mg/kg, i.p.) OVA/HC-030031 (300 mg/kg, i.p.)

LAR is attenuated by TRPA1 inhibitor (HC-030031) but not TRPV1 inhibitor (JNJ-17203212) in C57 BL/6J mice

LAR is attenuated by tiotropium bromide in Brown Norway rats and C57 BL/6J mice

CHOLINERGIC CONTROL OF AIRWAYS

TRPA1 and inflammation

Caceres et al., 2009, PNAS 106: 9099-9104