Phase 1 polymorphisms

B.Sc. Pharmacology & Translational Medical Science, yr 2

Marc-Emmanuel Dumas, Ph.D.

Biomolecular Medicine, Dept Surgery and Cancer Sir Alexander Fleming Building, room 360 South Kensington Campus

m.dumas@imperial.ac.uk

Learning objectives

- Different sources of variability
- Implication of polymorphisms on absorption, distribution and elimination of drugs
- Phase 1 and phase 2 metabolism
- Cytochrome P450 (CYP) -facts
- CYP polymorphisms

Different sources of variability

Pharmacogenetics

Implications of polymorphisms on Pharmacokinetics

- Drug Absorption
- Drug Distribution
- Drug Elimination
- Drug Metabolism
- Drug Activation

Implications of polymorphisms on Drug Effect

- Receptors
- Target Proteins

Phase 1 and phase 2 metabolism

Drug metabolism

Phase I

- Oxidation
- Reduction
- Hydrolysis
- Hydration
- Dethioacetylation
- Isomerization
- Aim: introduce a new functional group
- Cytochrome P450
 enzymes in hepatocytes

Phase II

- Glucuronidation
- Sulfation
- Methylation
- Acetylation
- Amino Acid Conjugation
- Glutathione Conjugation
- Fatty acid conjugation
- Aim: to increase water solubility
- Ususally in the cytosol

Drug Metabolizing Enzymes

Phase I: CYP and nonCYP involved with modification of functional groups (such as oxidation). See CYP P450 dominate over the others.

Phase II: Conjugative process for enhancing elimination of drug/metabolites out of the body. Note: UGT's (UDP Glucoronyl transferases) are the most predominant phase II enzyme.

Cytochrome P450 (CYP) -facts

Cytochrome p450 enzymes

- Cytochrome P450 enzyme family typically involved in oxidations (cf phase 1 drug metabolism)
- CYP enzymes of different gene families have a 40% or more homology in their amino acid sequences, but enzymes within one subfamily may have different substrates, regulation, etc.
- Over 70 % of total CYP content of the human liver is shared by seven subfamilies: CYP1A2, CYP2A6, CYP2B6, CYP2C, CYP2D6, CYP2E1, CYP3A

Cytochrome P450

Nomenclature

Polymorphism of phase I metabolism

- Extent of metabolism is determined by
 - Affinity of substrate-enzyme complex
 - Relative abundance of a given CYP enzyme relative to the total CYP content
- Sample reactions:
 - Debrisoquine ⇒ 4-OH-debrisoquine CYP2D6
 - Dextrometorphan ⇒ dextorphan CYP2D6
 - Dextrometorphan ⇒ methoxymorphinan CYP3A
 - Sparteine ⇒ 2-dehydrosparteine CYP2D6
 - Mephenytoin ⇒ 4-hydroxy-mephenytoin CYP2C9

Major P450 Isoforms

- CYP3A4 -
- CYP2D6 Polymorphism
- CYP2C19 Polymorphism
- CYP2C9 Polymorphism
- CYP1A2
- CYP2E1

Few CYP polymorphisms

CYP2D6 Polymorphism

- Discovered in the 1970s
- One of the most widely studied polymorphisms in drug metabolism
- 2% of total liver CYP content
- More than 50 alleles
- Up to 1,000 fold variation in the population
- Trimodal distribution:
 - Poor Metabolizers (PM)
 - Ultraextensive metabolizers (UEM)
 - Extensive Metabolizers (EM)
- Example: nortriptyline (tricyclic antidepressant)

Pharmacogenetics of nortriptyline

Meyer Nature Reviews Genetics 2004

CYP2D6 Genotype vs Phenotype

Sachse et al. Am J Hum Genet 60:284 1997

CYP2D6 Poor Metabolizers (PM)

- Inheritance of two mutant *CYP2D6 alleles*, due to nucleotide substitutions, deletions, insertions or gene conversions
- No enzyme protein or very poor enzyme activity; impaired metabolism of CYP2D6 substrates
- Frequencies:
 - Caucasians 8 10%
 - American Blacks 1 3%
 - Japanese / Chinese < 1%
- Clinical considerations: higher plasma drug level due to decreased drug clearance; exaggerated clinical outcome and increased risk of dosedependent side effects; may have to lower drug dose
 - PMs are at risk of drug toxicity even at standard doses, resulting in poor compliance
 - PMs may also present with treatment resistance to prodrugs that require activation (codeine)

Poor Metabolizer

Failure of Therapy

Codeine
CYP 2D6
Morphine

Poor Metabolizer Toxicity

Phenformin

CYP 2D6

Oxidative Metabolite

CYP2D6 Ultraextensive Metabolizers (UEM)

- Inheritance of alleles with duplication or amplification (up to 13 copies) of functional CYP2D6 genes
- Excessive amount of enzyme expressed, high metabolic capacity
- Frequency: from 2% in Swedish population to 29% in Ethiopian Population
- Clinical considerations: Possibly higher than normal drug dose required for efficacy; side effects if metabolites are toxic
- UEM present delayed therapeutic response or treatment resistance (29% of Ethiopians carry multiplicated functional CYP2D6 alleles)

Number of copies

CYP2D6 Extensive Metabolizers (EM)

- Individuals who are either homozygous for the normalfunctioning alleles or functional mutant alleles, or heterozygous with one active and one mutant allele
- Largest, but most diverse population, can have wide range of metabolic capacity
- Clinical considerations: high or low end of the group may need drug dose adjustment for acceptable efficacy and safety

Drugs Metabolized by CYP2D6

- Psychotropic medications: tricyclic antidepressants (nortriptyline), serotonin-norepinephrine reuptake inhibitor -SNRIs (venlafaxine), classical and atypical antipsychotics (haloperidol, perphenazine risperidone, atomoxetine)
- β -receptor antagonists (beta-blockers): metoprolol, propranolol, timolol
- Analgesic: phenacetine
- Antitussive: Dextromethorphan
- Chelator: D-penicillamine
- Opioids: Codeine, hydroxycodone, Oxycodone, Tramadol
- Abused drugs

CYP2D6 and Race/Ethnicity

Variant Alleles With Known Poor Metabolism for Enzymes That Metabolize Adverse Drug Reaction-Implicated Drugs*

Prevalence of Enzymes Poor Metabolizers, Race, %		Variant Alleles	Prevalence of Variant Alleles, Race, %	
CYP2D6	3-10, White; <2 Chinese, Japanese,	CYP2D6*2A	28-30, White; 20, Chinese; 12, Japanese	
	African American	CYP2D6*3A	21, White	
		CYP2D6*3B	2, White	
		CYP2D6*4A, B	20-23, White; 7-9, African American; 9, Africar	
		CYP2D6*5	2-5 White; 10-13 Japanese	
		CYP2D6*6A	2 White	
		CYP2D6*7	<1-2 White	
		CYP2D6*8	<1 White	
		CYP2D6*9	2 White	
		CYP2D610 (no further designation)	5 White; 50 Asian	
		CYP2D6*10A, B	2-5 White, 43-51 Chinese; 33-60 Japanese	
		CYP2D6*11	<1 White	
		CYP2D6*12	<1 White	
		CYP2D6*17	0 White, 26 African American; 9-34 African; 19 Korean	
		CYP2D6*36	9 Korean; 31 Chinese and Japanese	
		CYP2D6*4C, D, K, 4X2, 6B, 6C	No prevalence data	
		CYP2D6*13, 14, 15, 16, 18, 20, 38	No prevalence data	

Distribution of CYP2D6 enzymes in different populations

	Enzyme function	Allele frequency %			
Variant alleles		Caucasians	Asians	Black Africans	Ethiopians and Saudi Arabians
CYP2D6*2xN	Increased	1-5	0-2	2	10-16
CYP2D6*4	Inactive	12-21	1	2	1-4
CYP2D6*5	No enzyme	2-7	6	4	1-3
CYP2D6*10	Unstable	1-2	51	6	3-9
CYP2D6*17	Reduced affinity	0	ND	34	3-9

CYP2D6: polymorphism of debrisoquine metabolism

- Debrisoquine is the most frequently used test substrate in studies of the polymorphism of drug metabolism
- Frequency of phenotypes

Population	PM frequency %		
Hungary	7.74		
Caucasians	3-10		
Cuna Indians	0		
Bushmen	19		

Tailored dosing

Recommend dosage adjustment to Atomoxetine in CYP2D6 PM and those taking strong 2D6 inhibitors

- Individual > 70 kg: start at 40 mg/day
- Individual ≤ 70 kg: start at 0.5 mg/kg/day.

*Increase to the usual target dose of 80 mg/day and 1.2 mg/kg/day, respectively, only if treatment fails to improve symptoms after 4 weeks and the initial doses are well tolerated.

More facts about CYP2D6

- **CYP 2D6** also present in **brain**
- Functionally associated with dopamine transporter
- Might have a role in dopaminergic transmission
- Some studies have suggested differences in personality traits between PMs and EMs:
- Type A vs Type B personality
- Higher levels of anxiety / impulsivity (PMs)

Another example: Warfarin (Coumadin)

- Used for chronic anticoagulation
- Prevention of thrombosis (blood clots) and embolism (abnormal circulation of blood clots)
- Discovered after hemorrhaging in cattle fed with mouldy silage made from sweet clover.
- Two enantiomers (R- and S-), cleared by different pathways
- Very successful drug... but:
- Interactions with Vitamin K present in plant-based food
- Adverse reactions include:
 - Hemorrhage
 - Necrosis
 - Osteoporosis

Warfarin Metabolism

2 enantiomers

= 2 pathways

Importance of

CYP2C9 (S)

CYP2C19 (R)

Warfarin Pharmacodynamics

Importance of

VKORC1

(interaction with Vitamin K)

CYP2C19 Polymorphism

- Poor Metabolizers
- 3–5% of Caucasian
- 15–25% of Asians (Chinese, Japanese, Koreans, Indians, etc)
- May affect clearance of:

amitriptyline, diazepam, clomipramine, phenytoin, progesterone, propranolol, PPIs (lansoprazole, omeprazole, pantoprazole, rabeprazole, etc),

warafarin

CYP2C19 Polymorphism and Diazepam

- Why diazepam metabolism is slower in Asians compared to Caucasians?
- Effect on diazepam:

Genotype	Allele	Diazepam t _½	
EM	CYP2C19 *1/*1	20 hours	
PM	CYP2C19 *2/*2	84 hours	

 About 15 – 25% of Asians have high frequency of mutant alleles CYP2C19

CYP2C19 Polymorphism and H.pylori

H.pylori: bacteria from the gut, responsible for gut ulcers

Genotype	Allele	Cure rate
Wild type	CYP2C19 *1/*1	29 %
Htz	CYP2C19 *1/*2	60 %
HMz variant	CYP2C19 *2/*2	100 %

- Higher cure rates in variant HMz due to higher concentrations and longer duration of omeprazole dose
 - = CYP2C19 *2 variants have a beneficial effect in this case

CYP 2C19

Inducers

Rifampin

<u>Inhibitors</u>

- Fluvoxamine
- Ticlopidine
- Fluoxetine

Substrates

- Omeprazole
- Diazepam
- TCAs
- Clomipramine
- Phenytoin

CYP2C9 Polymorphism

- More than 50 SNPs have been described in the regulatory and coding regions of the CYP2C9 gene
- Some of them are associated with reduced enzyme activity
- 10–35% of Caucasians are poor metabolizers
- May affect clearance of:
- Phenytoin, S-warfarin
- losartan, valsartan, glipizide, glyburide

Frequency of CYP2C9 Phenotype in Various Populations

Groups	*1/*1 (%)	*1/*2 (%)	*1/*3 (%)	*2/*2 (%)	*3/*3 (%)
Caucasians	65	20	12	1	0.4
African american	97	2	1	0	0
Chinese	97	0	4	0	0
Japanese	96	0	4	0	0
Korean	98	0	2	0	0
Turkish	62	18	17	1	1
Spanish	50	16	24	2	0

CYP1A2: nonpolymorphic drug metabolism with polygenic control

- 13% of total liver CYP content
- Varies up to 130fold in individuals and in populations
- Important in disposition of several important psychotropic medications: clozapine, olanzapine

CYP 3A4

- Most abundant P450 in the liver (40 % by mass and metabolizes 60% of drugs)
- Liver, small bowel wall
- Not Polymorphic

CYP 3A4

Inducers

- Phenobarbital
- Rifampin
- Prednisone
- Carbemazepine
- Phenytoin

<u>Substrates</u>

- Steroids
- Macrolides
- CCB
- Hormones
- Antihistamines
- Taxol, Vinblastine
- Cisapride

Causes of Variability

- 80% of the variability of 2D6 is due to genetic factors
- 3A4, no genetic variability- variability is probably due to induction (rifampin increases 3A4 activity 20 fold)

Conclusions

- Phase 1 polymorphisms
- Mostly CYP

- To be continued with next lecture in pharmacogenetics:
- Phase 2 polymorphisms + ADME