

Apparent volume of distribution, V, is not a physiological volume (may be much larger than body volume!). It is a theoretical volume relating dose delivered to the concentration in the plasma, Cp.

Examples of apparent volumes of distribution					
Drug		V (l/kg)	V (I) (70kg)]	
sulfis	soxasole	0.16	11.2		
pher	nytoin	0.63	44.1		
pher	obarbital	0.55	38.5		
diaze	epam	2.4	168		
digo	xin	7	490	1	
				•	

Apparent volume of distribution can be calculated from Cp⁰ determined by extrapolating the In (Cp) vs time plot back to t=0 (even if there is no actual measurement at t=0).

Example values for elimination rate constants & half-times

Drug	k _{el} (hr-1)	t _{1/2} (hr-1)
paracetamol	0.277	2.5
diazepam	0.021	33
digoxin	0.016	43
gentamicin	0.347	2
lidocaine	0.390	1.8

For a one compartment IV bolus

$$\begin{vmatrix} \frac{\partial X}{\partial t} \end{vmatrix} = \begin{vmatrix} V \bullet \frac{\partial Cp}{\partial t} \end{vmatrix} = CL \bullet Cp$$
but $\frac{\partial Cp}{\partial t} = -k_{el} \bullet Cp$

$$\therefore \qquad CL = k_{el} \bullet V$$
or
$$k_{el} = \frac{CL}{V}$$

$$\begin{split} \frac{\partial X}{\partial t} &= k_0 - k_{ei} X \\ \frac{\partial X}{k_0 - k_{ei} X} &= \partial t \\ & \text{integrating} \\ \int \frac{\partial X}{k_0 - k_{ei} X} &= \int \partial t \\ \frac{\partial X}{k_0 - k_{ei}$$

