

- What is Pharmacodynamics?
- the study of the physiological effects of drugs (what drugs do to the body)
- study of mechanisms of drug action (drug targets)
- analysis of relationship between drug concentration and effect

Basic questions

- What is a Drug?
- What are Drug Targets ?

Targets for Drug action

- · Drugs are chemicals that affect a physiological system in a specific way
- · Most drug targets are proteins: receptors, ion channels, enzymes, carriers
- Specificity & reciprocity. In many cases particular classes of drugs bind only to certain targets & individual targets recognise only certain classes of drugs
- · No drugs are entirely specific (ideal) side effects

Paul Ehrlich (1854-1915)

Synthesised & tested series of organo-arsenic compounds as treatments for syphilis & sleeping sickness.

marketed by Hoechst in 1910 as Salvarsan. Nobel Prize for Medicine 1908

Arsphenamine ("606")

1900

- Drug actions can be explained by chemical interactions
 A drug will not work unless it is bound (to a target)
- Coined the terms "chemotherapy" and "magic bullet"

Proteins as Drug Targets

- Receptor protein molecule that recognises endogenous chemical signal. ACh receptor, GABA receptor, βadrenergic receptor, cytokine receptor, glutamate receptor.
- Ion channel membrane protein with integral ion channel. Ligandgated (ionotropic), voltage-gated, G-protein coupled (metabotrobic)
- Enzymes
- Nuclear Receptors
- Transporters

С	haracterising type wit	of inhibition from d h and without inhib	ouble reciprocal plot itor
	type of inhibition	apparent V_{max}	apparent K_{M}
	Competitive	V _{max}	K _M (1 + [I]/K _i)
	D		14

Competitive	V _{max}	K _M (1 + [I]/K _i)
Pure non- competitive	V _{max} / (1 + [l]/K _i)	K _M
Uncompetitive	$V_{max} / (1 + [I]/K_i)$	K _M /(1 + [I]/K _i)

