Receptors

B.Sc. Pharmacology & Translational Medical Science, yr 2

Marc-Emmanuel Dumas, Ph.D.

Biomolecular Medicine, Dept Surgery and Cancer Sir Alexander Fleming Building, room 360 South Kensington Campus m.dumas@imperial.ac.uk

Learning objectives

- The role of receptors and why they are good drug targets
- Types of receptors
 - Ligand-gated ion channels
 - G-protein coupled receptors
 - Kinase-linked receptors
 - Nuclear receptors
- How drugs interact with receptors
 - agonism, antagonism

What are receptors? How do they work?

- Communication between nerves and cells
- Nerves in CNS send messages to target cells
- Cells of one tissue send messages to other cells
- Chemical messenger = neurotransmitter or hormone

Typical neurotransmitters

HO

HO

Dopamine

- Cover gap between nerve and cell
- Structures vary
 - lons
 - Lipids, purines, peptides
 - Monoamines, amino acids

$$\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$$

Hormones

(a) Specificity S₁ Signal molecule fits binding site on its complementary receptor; other signals do not fit.

Endocrine, paracrine, autocrine

TABLE 23-1 Classes of Hormones

Туре	Example	Synthetic path	Mode of action	
Peptide	Insulin, glucagon	Proteolytic processing of prohormone		
Catecholamine	Epinephrine	From tyrosine }	Plasma membrane receptors; second messenger	
Eicosanoid	PGE₁	From arachidonate		
	•	(20:4 fatty acid)		
Steroid	Testosterone	From cholesterol		
Vitamin D	1,25-Dihydroxycholecalciferol	From cholesterol	Nuclear receptors: transcriptional regulation	
Retinoid	Retinoic acid	From vitamin A	Nuclear receptors, transcriptional regulation	
Thyroid	Triiodothyronine (T ₃)	From Tyr in thyroglobulin		
Nitric oxide	Nitric oxide	From arginine $+$ 0_2	Cytosolic receptor (guanylate cyclase) and second messenger (cGMP)	

Receptors

Type 1: ligand-gated ion channels

Ligand-gated ion channels

- Ligand-gated ion channels = "ionotropic receptors"
- Respond within milliseconds
- Membrane proteins :
 - made of several subunits
 - structure similar to other ion channels
 - incorporating ligand-binding site = receptor

• Examples:

- nicotinic acetycholine receptor
- GABA_A receptor
- glutamate receptor

Typical ion channel: Acetylcholine nicotinic receptor

A hypothetical neurotransmitter and receptor:

- What binding groups exist on the neurotransmitter?
- On the binding site?

Lock-gate mechanism

Ach nicotinic receptor

Type 2: G-protein coupled-receptors

Type 2: G-protein coupled-receptors

G-protein-coupled receptors

 Receptors coupled to intracellular enzymatic effector systems = "metabotropic receptors"

- Respond within seconds
- transmembrane proteins:
 - Monomeric, but 7 transmembrane
 domains = "serpentine", snake-like
 - Coupled to G proteins (guanine nucleotide-binding proteins)
- Examples:
- Muscarinic acetycholine receptor
- Adrenoreceptors

G-proteins

- Guanine nucleotide-binding proteins
- Heterotrimeric complexes
 - $-\alpha$, β , γ subunits
- $G\alpha$ subunit act as molecular switch
 - guanosine triphosphate (GTP) = activated
 - guanosine diphosphate (GDP) = deactivated
- Different types of subunits => different targets
 - "Second messengers"
- Also small GTPases (not covered)

G-protein-coupled receptors

Examples

- Muscarinic receptors in heart ↑ K⁺ permeability and ↓ electrical activity
 Antagonist: atropine
- Opiates open K⁺ channels and vexcitability in neurons
 Antagonist: naloxone

Membrane-bound enzyme activation via G-proteins

Mechanism of G-protein coupled receptor transduction

Examples of G-protein-coupled actions

G-proteins	Targets activated	Example of receptor involved	Typical effect	Produced by agonists	Antagonist
(Gq) +++	PIP ₂ Phospholipase C PIP ₃ — Releases Ca ²⁺ from intracellular stores PAG — Activates protein kinase C	H ₁ -histamine	Smooth muscle contraction (*IP3) A variety of effects due to protein phosphorylation	Histamine Ch. 15	Mepyramine
(G _s)	Adenylate cyclase	β ₂ -Adrenoceptor →	Smooth muscle relaxation (†cAMP)	Adrenaline Ch. 11, salbutamol Ch. 24	•
Gi	cAMP — Activates protein kinase A	M ₂ -muscarinic →	Decreased force of contraction of the heart (\dagger cAMP)	Acetylcholine	Atropine
	K ⁺ channels in cell membrane Increased opening of the channels resulting in hyperpolarisation	M ₂ -muscarinic —►	Cardiac slowing	Acetylcholine Ch. 10	Atropine

Diversity of G-protein coupled actions

Type 3: Kinase-linked receptors

Type 3: Kinase-linked receptors

Kinase-linked receptors

- Receptors coupled to intracellular kinase
- Respond within hours
- Heterogeneous family of proteins :
 - Monomeric
 - Single transmembrane helix linking extracellular receptor domain to intracellular kinase domain

• Examples:

- Insulin receptor
- Growth factor receptor
- Cytokine receptors
- etc...

Different types of Receptor Tyrosine Kinases (RTKs)

Figure 15-52 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Mechanism of action

Typical tyrosine kinase cascade

C

В

Agonist binding to 2 receptors leads to coupling (dimerisation). The TKs in each receptor phosphorylate the other member of the dimer

Gene transcription 4

SH2-containing 'adapter' proteins bind to the phosphorylated residues in the receptors and activate a pathway consisting of Ras, which becomes activated after exchange of GDP for GTP; this, in turn, activates a cascade of three kinases. The last kinase phosphorylates various transcription factors, thus activating transcription of the genes for proliferation and differentiation

Growth factor cascade

Cytokine receptor cascade

Type 4: Nuclear Receptors

Type 4: Nuclear Receptors

Nuclear Receptors

- Intracellular receptors affecting gene transcription
- Respond within hours
- Large family of proteins:
 - Monomeric
 - DNA binding domain "zinc fingers"
- Examples:
 - Thyroid hormone receptor
 - Steroid receptors

Examples of molecules binding nuclear receptors

Figure 15–12 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

Figure 15–12 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

The Nuclear Receptor superfamily (1)

Figure 15–13 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

The Nuclear Receptor superfamily (2)

3D structure of Nuclear Receptors

Figure 15-13 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Generic Nuclear Receptor Mechanism

Examples are members of the steroid superfamily of receptors;

- · corticosteroid receptors
- oestrogen and progestogen receptors
- · thyroid hormone receptors
- Vitamin D₃ receptors

The Gc/receptor complexes form dimers before entering the nucleus (not shown)

Two types of responses

(A) EARLY PRIMARY RESPONSE TO STEROID HORMONE

induced synthesis of a few different proteins in the primary response

Figure 15-14 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

(B) DELAYED SECONDARY RESPONSE TO STEROID HORMONE

Figure 15-14 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Steroid hormone receptors

- The relative sizes of the human receptors indicated.
- The numbers above the bars indicate the percentage homology of the consensus regions of the DNA- and ligand-binding domains

Mechanism of action SHR

Sub-family: RXR heterodimers

Prototypiske members:

- RAR [retinoic acid receptor] vitamin A metabolite
- VDR [vitamin D receptor]
- TR [thyroid hormone receptor]
- PPARy [prostaglandine J2]
- several "Orphan receptors" with unknown ligand

Characteristic feature of the RXR-heterodimers

- Broader chemical variation of ligands
- Not all ligands are endocrine hormones
- ligand-independent activation mechanisms exist
- bind DNA also in absence of ligand
- bind often to "direct repeats"
- bind as heterodimers

Several coactivators and corepressors

Bioactive lipids and their nuclear receptors

Nuclear receptor		Ligand
Retinoid X receptors*	$RXR\alpha$, β , γ	9- <i>cis</i> Retinoic acid
	PPARα	Fatty acids Fibrates
Peroxisome proliferator- activated receptors	PPARδ	Fatty acids Carboprostacyclin
	PPARγ _	Fatty acids Eicosanoids Thiazolidinediones
Liver X receptors	LXRα,β	Oxysterols
Farnesoid X receptor	FXR	Bile acids
Xenobiotic receptors	SXR/PXR	Xenobiotics Steroids
	CAR -	Xenobiotics Phenobarbital
Ecdysone receptor	EcR	20(OH)-ecdysone
Retinoic acid receptors	RAR α , β , γ	Retinoic acids
Vitamin D receptor	VDR	1,25(OH) ₂ -vitamin D ₃

Receptors: synopsis

How drugs interact with receptors

Agonists

- Receptor binding site
- Design of agonist:
 - 1. Correct binding groups
 - 2. Correctly positioned
 - 3. Correct size

Enantiomers

Asymmetrical Synthesis

Pharmacophore

Antagonists

Other types of antagonists:

Allosteric antagonists

Antagonism by the umbrella effect

Partial agonists

1. Small conformational change

- 2. Multiple binding, same receptor
- 3. Multiple receptors

After binding...

 What happens when a drug binds to the receptor and stays for a prolonged period of time?

- 1. Desensitization
- 2. Sensitization

1. Desensitization

Phosphorylation

- Endocytosis
- Reduction of receptors

2. Sensitization

 Prolonged deactivation by antagonist leads to deficiency of messages sent to cell

• Leads to tolerance and dependence

