Molecular Targets of General Anaesthetics Dr Robert Dickinson Anaesthetics, Pain Medicine & Intensive Care Section Imperial College Biophysics Group Blackett Laboratory South Kensington Campus r.dickinson@imperial.ac.uk

Molecular Targets of General Anaesthetics

- Meyer-Overton correlation
- Theories of general anaesthesia
 - Lipid theories
 - Protein theories
- Molecular interactions with proteins
- Ion channel targets
 - Criteria for putative targets

<u>Lipid theories of anaesthesia</u>

- Unitary hypothesis
- Diversity of theories
- -membrane expansion
 - -membrane fluidity
 - -membrane phase transitions

Anaesthetics do not act by disrupting lipid bilayers

Do anaesthetics act by binding to proteins?

Anaesthetics act by binding directly to sensitive protein targets in pre-formed cavities or clefts

.....but which proteins are relevant?

Criteria for putative targets

- Plausibility
- Sensitivity
- Stereoselectivity

Anaesthetic endpoints & free aqueous concentrations for thiopental

Rat		Human	
	Thiopental (μΜ)		Thiopental (μΜ)
Righting reflex	9	Response to verbal command	9
Response to painful stimulus (Tail clamp)	22	Response to painful stimulus (Surgical incision)	23
Tracheal intubation	39	Tracheal intubation	46

Data from Becker (1978) Anesthesiology 49, 192-196, Hung et al. (1992) Anesthesiology 77, 237-244 and Gustafsson et al. (1996) Anesthesiology 84, 415-427.

Most voltage-gated ion channels are insensitive to anaesthetics

Stereoselectivity for general anaesthesia		
Isoflurane (Dickinson et al., 2000)	~1.5	
Barbiturates (Andrews & Mark, 1982)	2-4	
Ketamine (White et al., 1985)	2-4	
Etomidate (Tomlin et al., 1998)	>10	
Neurosteroids (Wittmer et al., 1996)	>10	

Where does xenon act on NMDA receptors?

• Can molecular modelling combined with electrophysiology provide the answer?

Molecular Modelling

- Why might molecular modelling work for Xe binding?
- Xe is simple "noble" gas with only two relevant force/energy terms van de Waals charge-induced dipole
- Use GCMC simulations

Clinical implications/Neuroprotection

- NMDA receptors critical in signalling pathways involved in cell death & neuronal injury in stroke, neonatal asphyxia & head trauma.
- NMDA receptor glycine site antagonists (e.g gavestinel) well tolerated & devoid of psychotomimetic side effects.

- Xenon neuroprotection against ischemia mediated by glycine-site inhibition
- Identifies NMDA receptor as target for xenon neuroprotection against ischemia
- Clinical implications
 - Glycine-site antagonists well tolerated in patients
 - Low blood/gas coefficient \Rightarrow rapid onset
 - Therapeutic window up to 3hrs post-insult
 - Neonatal asphyxia, perioperative stroke, cardiac arrest

Ion channels sensitive to general anaesthetics

- GABA_A receptor
- NMDA receptor
- 2 pore K+ channels
- glycine receptor spinal chord (immobility)
- neuronal nACh receptor function unclear (amnesia?)

Further reading:	
see reference list on handout	