
Paolo A. Muraro, MD PhD Clinical Reader in Neuroimmunology and Honorary Consultant Neurologist

Learning objectives

- Understand the main categories of treatments for MS (what can we treat)
- Be familiar with the main approved disease-modifying treatments
- Be familiar with the main symptomatic treatments and the management of common complications
- Have a notion on what new treatments are being experimented

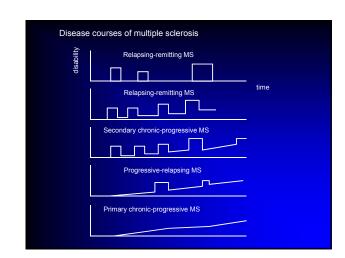
MS pathogenesis – brief recap

- Inflammation
- Demyelination
- Axonal damage and loss

Management of MS

- Education and counselling
- Management of acute attacks
- Prevention of relapses and progression of disability
- Symptomatic therapy
- Physical therapy
- Treatment of complications

Education and counselling

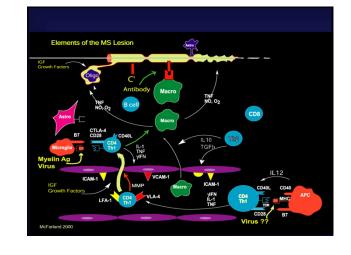

- Information on MS
- · MS societies, web sites
- Well-balanced diet
- · Regular exercise, avoid heat
- · Work or habits adjustment
- Psychosocial and multidisciplinary management

Overview of pharmacological treatments for MS

- Of acute attacks - High dose steroids
- To prevent relapses and accumulation of disability
 - Immunomodulatory treatments
 - Immunosuppressive treatments

Symptomatic

- Anti-spastic drugs
- Drugs to reduce neuropathic pain
- Medication to improve bladder control



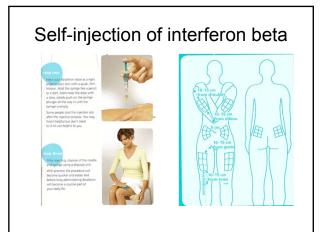
Management of acute attacks

- · Exclude pseudo-relapses (heat or feverrelated)
- · Decide on necessity for treatment
- · Standard treatment given to accelerate recovery
 - High-dose IV methylprednisolone (500-1000 mg/day x 3-5 days
 - High-dose oral prednisone
 - Standard-dose steroids not recommended
 - Commonly given in day hospital setting

Prevention of relapses and progression of disability (disease-modifying treatments, DMTs)

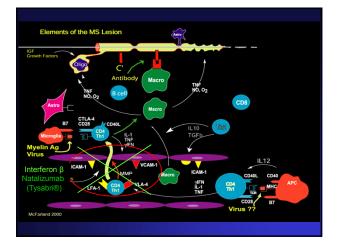
- RR MS
 - Interferon beta
 - Glatiramer acetate/copolymer 1
 - Azathioprine Intravenous Immunoglobulin (IVIg)
 - Natalizumab
- SP MS
- Interferon beta 1b Mitoxantrone
- Primary progressive
- Low dose Methotrexate
 No treatment proven effective

Approved immunomodulatory treatments for RR-MS

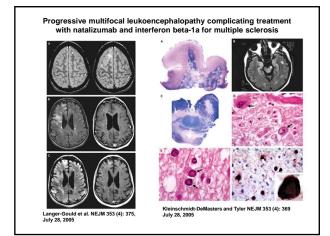

- Interferon-β
- Glatiramer acetate
- Natalizumab

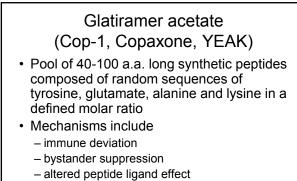
Interferon-β (Betaferon,Rebif, Avonex)

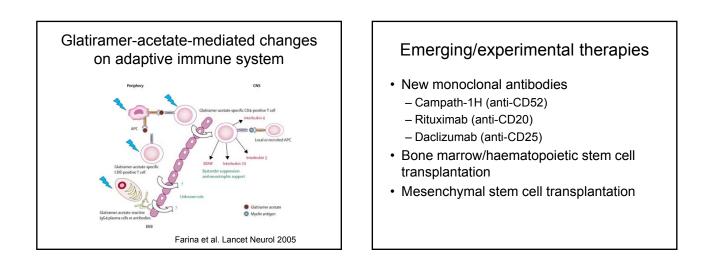
- · First immunomodulatory Tx for MS
- Naturally secreted cytokine, Type I IFN
- Thought to act on several components of immune response:
 - Suppresses lymphocyte proliferation
 - T helper immune deviation?
 - Downregulation of MHC expression
 - Pro-/anti apoptotic effects on lymphocytes
 - Interference with cell adhesion


Interferon- β for treatment of MS

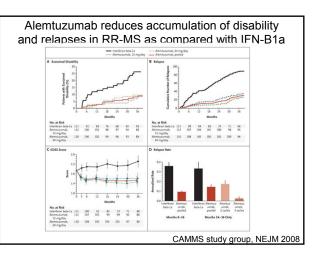
- Relapsing-remitting or early secondary progressive
- Prevents about 1/3 of relapses
- Reduces accumulation of disability (controversial)
- Neutralising antibodies develop in 15-30% and may reduce efficacy


Mechanisms of IFN-beta


- Anti-viral effect?
- IFN-β treatment reduces VLA-4 cell surface expression on T lymphocytes


Natalizumab (Tysabri)

- Humanized mAb directed against α4 subunit of integrin
- Clinical efficacy on active inflammation and relapse rate
- Progressive multifocal leukoencephalopathy observed as complication of treatment (1/1,000 treated patients)



- Neurotrophic support

Alemtuzumab

- Formerly known as Campath-1H
- Anti-CD52 monoclonal antibody
- Profound and long-lasting T- and B-cell depleting effects
- Risk of secondary autoimmunity:
 - Hyperthyroidism/Graves' disease (up to 25-30%)
 - Immune thrombocytopoenic purpura

Rituximab

- · Anti-CD20 monoclonal antibody
- Profound and long-lasting B-cell depleting effects
- Approved therapy for B cell lymphomas
- Risk of serious adverse events: PML
- May target specific B cell dependent pathogenic components, e.g. meningeal neolymphoid follicles

Effects of Rituximab on Gadolinium-Enhancing Lesions from Baseline to Week 48

Antibody	Therapeutic target	Comments	Study
Anti-T12 (mouse)	CD6 (expressed on all T cells and thymocytes)	Tested in pilot trials only; allergic reactions observed	Hafler et al. (1986) ¹⁴
Anti-T11 (mouse)	CD2 (expressed on all T cells)	Tested in pilot trials only; mAb-labeled T cells found in CSF	Hafler and Weiner (1988) ¹³ Hafler and Weiner (1987) ¹⁶
Anti-T4 (mouse)	CD4 (expressed on T-helper cells)	Tested in pilot trials only	Haffer and Weiner (1988) ¹³
cM-T412 (mouse-human chimeric)	CD4 (expressed on T-helper cells)	Tested in phase II trials; long-lasting depletion of CD4* T cells; clinical and MRI findings not impressive	van Oosten et al. (1997) ²³ Llewellyn-Smith et al. (1997)
OKT [®] 3 (Johnson & Johnson, New Brunswick, NJ) (mouse)	CD3 (expressed on all T cells)	Tested in phase I/II trials; side effects related to systemic cytokine release	Weinshenker et al. (1991) ¹⁸
cA2 (humanized)	TNF-a	Treatment-exacerbated inflammatory activity	van Oosten et al. (1996) ²⁹
Natalizumab (Tysabri [®] , formerly Antegren [®] , Elan Pharmaceuticals, Inc., San Francisco, CA) (humanized)	a4 integrin on leukocytes	Impressive clinical results in phase II and III trials; marketing suspended because of serious adverse reactions (PML)	Miller et al. (2003) ³⁶ and unpublished results ⁵³
Alemtuzumab (Campath®- 1H, Burroughs Wellcome Co., Research Triangle Park, NC) (humanized)	CD52 on leukocytes	Long-lasting and sustained lymphocyte depletion; suppression of MRI evidence of inflammation but not atrophy; induction of cytokine release; autoimmune thyroid disease	Coles et al. (1999) ^{43,44} Moreau et al. (1994) ⁴⁵
Daclizumab (humanized)	CD25 on activated cells	Promising in phase II trials	Bielekova et al. (2004) ⁴⁸ Rose et al. (2004) ⁴⁷
Rituximab (mouse-human chimeric)	CD20 on B cells	Promising in treating neuromyelitis optica	Rizvi and Bashir (2004) ⁵⁰ Cree et al. (2005) ⁵¹
ATM-027 (humanized)	TCR V(I5.2/5.3 on T-cell subset	MRI results in phase II trials unimpressive	Killestein et al. (2002) ⁵⁴
CNTO 1275 (fully human)	IL-12	Tested in phase I/II trials	National Multiple Sclerosis Society USA ⁵³
J695 (fully human)	IL-12	Tested in phase I/II trials	National Multiple Sclerosis Society USA ⁵⁵
Hu23F2G (humanized)	LFA-1 (CD11/CD18)	Phase II trials unsuccessful	Lublin et al. (1999) ⁶¹
IDEC-131 (humanized)	CD154 on immune cells and activated platelets	Phase //I clinical trials halted because of thromboembolic complication	National Multiple Sclerosis Society USA ⁵³

Symptomatic treatment

- Spasticity
- · Sphincter disturbances
- Pain
- Fatigue
- Depression
- · In-coordination and tremor
- Sexual dysfunction

Treatment of spasticity

• Stretching, physical therapy

Pharmacological

Baclofen

- When given orally limited by side effects: drowsiness and hypotonia
- Can be given intrathecally with implanted pump
- Tizanidine
- Benzodiazepines
- Botulinum toxin
 - More selective effect

Treatment of sphincter disturbance: Bladder dysfunction

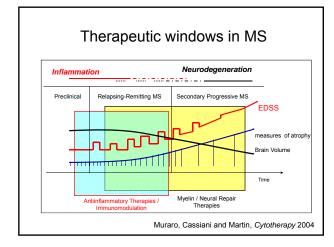
- Small, spastic bladder (failure to store, detrusor hyperactivity →frequency/urgency)
 - Oxybutinine chloride 5mg tds (up to 40 mg/day)
 - Imipramine (0.5-1mg/kg/day)
- Flaccid, big bladder (failure to empty, residual volume >400 cc)
 - intermittent self-catheterisation
- Dyssynergic bladder ("conflicting", urgency followed by hesitation)
 - Alpha blockers

Treatment of pain

Establish origin of pain

- Paroxysmal pain:
 - Gabapentin 900mg/day to max 1.8g/day
 Carbamazepine 100-800mg/day
- Chronic dysaesthetic pain:
- Amitriptyline 20-100 mg/day
- Other antiepileptic and antidepressant drugs can be effective or better tolerated
- Narcotics and NSAIDs are ineffective and not recommended for neuropathic pain

Treatment of fatigue


- · Limited options
- Energy savings (day planning, devices)
- · Pharmacological treatment
 - Amantadine (unconfirmed)
 - Some antidepressants

Management of complications

- Depression: psychosocial and pharmacological Tx
- Urinary tract infection: antibiotics
- Limb contractures due to spasticity: orthoses, tendon surgery
- Gastroparesis and intestinal pseudo-obstruction: pharmacological or mechanical evacuation
 Description of the second secon
- Dysphagia, malnutrition: nutritionist evaluation, percutaneous endoscopic gastrostomy (PEG)
- Aspiration pneumonia and bronchopneumonia: medical, antibiotics
- Pulmonary thromboembolism: anticoagulation, ICU
 Pressure sores: debridement surgery, water mattress

Future

- · Improved understanding of the disease
 - Neuroimmunology
 - Neuropathology
 - Genomics and proteomics
 - Imaging
 - Pathophysiology of fatigue
- \rightarrow More effective treatments
 - Immunotherapies
- Neuroprotective therapies
- Regenerative approaches

Recommended reading

- Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000;343(13): 938-52.
- Wekerle H and Hohlfeld R, Drug insight: using monoclonal antibodies to treat multiple sclerosis. Nat Clin Pract Neurol. 2005 Nov;1(1):34-44
- McAlpine's Multiple Sclerosis, Fourth Edition, Churchill Livingston, 2005 (relevant sections)
- Muraro and Bielekova. Emerging treatments for multiple sclerosis. Neurotherapeutics. 2007 Oct;4(4):676-92