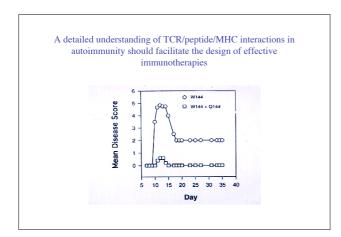


r.boyton@ic.ac.uk

Some examples


- Classic, textbook, autoimmune diseases defined by clinical tests of autoreactivity: systemic lupus erythamatosis (SLE) thyroiditis (Grave's Disease, Hashimoto's) myasthenia gravis Goodpasture's disease
- Diseases of presumed autoimmune aetiology multiple sclerosis type I diabetes Crohn's disease

 T lymphocytes specific for self myelin proteins cross the blood brain barrier and destroy the myelin sheath, causing loss of conductivity and leading to axonal loss.

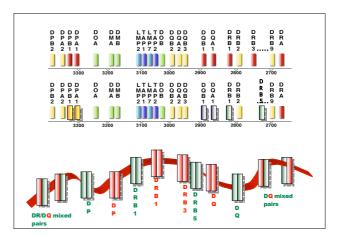
- Oligoclonal immunoglobulin bands seen in cerebrospinal fluid
- Therapeutic immunosuppression (e.g. cyclosporin)
- Genome scans indicate multiple genes, strongest contribution coming from the HLA immune response genes, particularly HLA-DR15, DQ6
- Presence of T cell infiltrates at the site of plaques
- Disease is mimicked by experimental allergic encephalomyelitis, in which T cells are necessary and sufficient to induce disease
- During the course of MS and EAE autoreactive T cell responses are observed against myelin peptides

Genetics AND environment have a role in susceptibility - any experimental model must take this into account

- Autoimmune diseases tend to show low concordance between monozygotic twins e.g. around 30% in MS
- Much epidemiological evidence for change in risk with human migration e.g. relatively high incidence of MS in second generation Asians in UK
- Autoimmune events can quite specifically follow infection e.g. reactive arthritis

Disease	Allele	Relative risk
Ankylosing spondyliti		
Coeliac disease	DQB1*0201	
Goodpastures disease		
	DRB1*0701	
Graves disease	DRB1*0301	
IDDM, juvenile onset	DRB1*0301/0401	
	DQB1*0302	
	DQB1*0602	
IgA nephropathy	DRB1*0301	
Multiple sclerosis	DRB1*1501/DQB1*0602	
Narcolepsy	DQB1*0602	
Pemphigus vulgaris	DQA1*0201/DQB1*0503	
Rheumatoid arthritis	DRB1*0401	
SLE	DRB1*0301	

For many autoimmune diseases, the strongest genetic association is with HLA genes


These are the human immune response genes, regulating presentation of antigen to T cells

So, by Occam's razor, maybe the association reflects how potently a self antigen(s) is presented to T cells

The MHC: comprises 421 loci, of which 252 are classified as expressed genes, 139 as pseudogenes

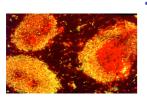
Category	Genes
Antigen processing/ presentation	HLA-A, -B, -C, -DMA, -DMB, -DOA, -DOB, -DPA1, -DPB1, -DQA1, -DQA2, -DQB1, -DQB2, -DFA, -DFB1, -DBB3, -DFB4, -OFB5; PRSS16; PSMB8, PSMB9; TAP1, TAP2, TAPBP; UBD
Immunoglobulin superfamily	AGER; BTN1A1, BTN2A1, BTN2A2, BTN2A3, BTN3A1, BTN3A2, BTN3A3, BTNL2; C6orf25; MOG
Inflammation	ABCF1; AIF1; DAXX; IER3; LST1; LTA, LTB; NCR3; TNF
Leukocyte maturation	DDAH2; LY6G5B, LY6G5C, LY6G6D, LY6G6E, LY6G6C
Complement cascade	BF; C2, C4A, C4B
Non-classical MHC class I	HLA-E, HLA-F, HLA-G; HFE
Immune regulation	NFKBIL1, RXRB, FKBPL
Stress response	HSPA1A, HSPA1B, HSPA1L; MICA, MICB
remote links have been excluded sequence to a known immune g determined. The largest class of presentation, and includes class	ished functions for instate or adaptive immunity; genes with d. Some genes have been included because they are related by ene family but the precise function of these is still to be immune system genes is involved with antigen processing and cal class I and I molecules, as well as some of the antigen g peptides onto class I molecules. xMHC, extended major

Analysis of human immune responses is complex and therapeutic intervention in these responses can be high-risk. 'Humanized (HLA, TCR) transgenics offer a reductionist bridge

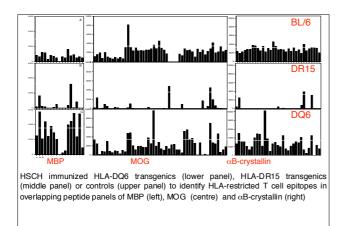
The rough guide to making a transgenic

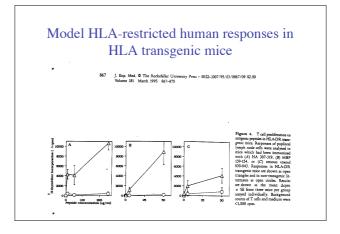
- Clone the gene of interest, being careful to characterise and encompass any upstream and downstream regulatory DNA sequences necessary for correct tissue expression
- Prepare a high quality prep of this DNA
- Meanwhile, conduct timed matings of some mouse breeding pairs, allowing the harvesting of single-cell, fertilised oocytes
- Using a glass microinjection needle, inject some DNA into the pronucleus of the oocyte
- Surgically re-implant the injected oocytes into the oviduct of a pseudopregant foster mother (prepared by mating with a vasectomised male)
- Wait for litters and genotype by PCR for gene of interest

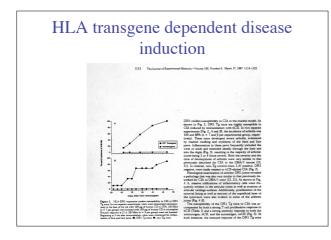
What are the uses of HLA transgenic disease models?


- Predict epitopes relevant to human disease
- · Work out mechanisms in disease pathogenesis
- Create a more relevant, 'humanised' test-bed for therapeutics

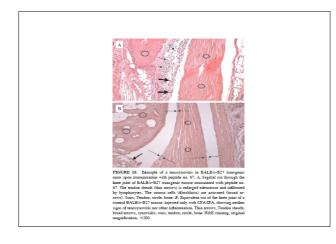
Generation of relevant HLA class II transgenic mice

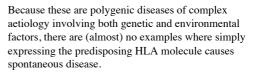

 Need to clone and characterize large, fulllength genomic clones encompassing upstream and downstream regulatory sequences


The following transgenic constructs were characterised and pre- microinjection :	pared for
- DQA1*0102: 12 kb Kpn 1 fragment (arrows) ~rekb C LA ~9 kA 1 stur 20 kb Kyr 1	
BanHI	
EleRI	
BasHI	
Kpn1	
Ps+1	
Hinda	
DQB14664: >16kb Sal 1 fragment (arrows) 5kb Fkb 110 - 7k kb 5kb A - 7k kb - 7k kb	-
Bandil	
EcoRI	
Kpm/	
Sunt	
Xbal	
Sec.1	


Genomic clones give faithful tissue distribution in HLA-DR transgenic mice

 HLA-DR1 cosmid clone gives characteristic splenic pattern of colocalisation with IgM around follicles and staining of DCs in T cell area Predicting HLA-DR and HLA-DQ restricted T cell epitopes from human myelin that should be relevant to immune responses of MS patients:

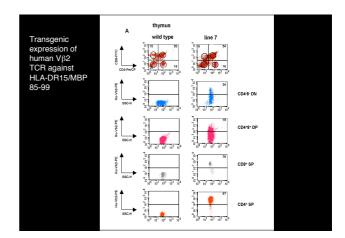


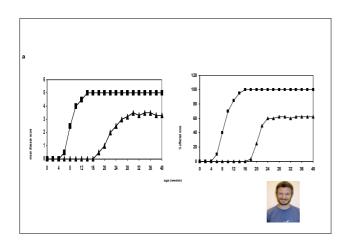

HLA allele	Disease modelled	Antigen studied	Findings	
HLA-DRB1*0401	Rheumatoid arthritis	Type II collagen	261-273 immunodominant epitope	Also found in RA patients' responses
HLA-DRB1*0401	Rheumatoid arthritis	Type II collagen	Immunisation can cause HLA dependent polyarthritis	Induce with whole CII or 261-273. Simila findings in HLA-DR1 and HLA-DR4. Epitope overlaps mouse H2-A ⁴ epitope.
HLA-DRB1*0401	Rheumatoid arthritis	HCgp39	3 immunodominant epitopes identified. Differential epitopes between susceptibility (0401) and control (0402) alleles	Epitopes confirmed in studies of human patient T cell responses
HLA-DRB1*0401	Type I diabetes		Identification of GAD65 274-286, and 115-127 as DR4 restricted epitopes	
HLA-DRB1*0401	Type I diabetes		6 immunodominant epitopes identified	Epitopes confirmed in DR4 patients
HLA-DQB1*0302	Type I diabetes		GAD521-535 implicated as epitope associated with susceptibility	Comparisons on susceptible and non- susceptible mice and affected and unaffect twins.
HLA-DQB1*0302	Type I diabetes	GAD65	Adoptive transfer of disease with GAD 247-266 and 509-528 specific lines	Recipients needed pre-treatment with streptozotocin to generate islet insult
HLA-DQB1*0302	Type I diabetes	GAD65	GAD65 121-140, 201-220, 231-250, and 471-490 identified as DQ8 epitopes.	
HLA-DQB1*0302	Type I diabetes		Three immunodominant regions identified, 51-120, 111-180, 521-585, as well as definition of common core motif	Epitopes confirmed in DQ8 patients
HLA-DQB1*0302			Differences in proinsulin epitope recognition between DQ8 and DQ6 mice	
HLA-DRB1*0401	Type I diabetes	Preproinsulin and proinsulin	Immunodominance of 73-90 peptide	Sequence spans region that is proteolytical destroyed during maturation of the insulin molecule

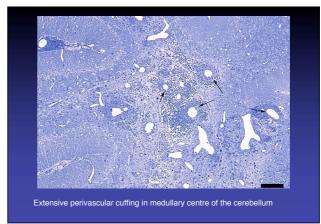
Identification of Novel Human Aggrecan T Cell Epitopes in
HLA-B27 Transgenic Mice Associated with
Spondyloarthropathy ¹

Wolfgang Kuon,^{2,}® Maren Kuhne,® Dirk H. Busch,² Pamir Atagunduz,® Martina Seipel,⁸ Peilma Wu,® Lars Morawietz, Gabriele Fernahl,⁷ Heiner Appel,® Elisabeth H. Weiss,¹ Veit Krenn,⁷ and Joachim Sieper®

Veit Kreenn, and Joachimi Steper²⁴ The pathology of anyloing isopolity, active arthritis, and other upoxh/bardhropathies (5pA) is chooly associated with the human biocycie don't Ag IIIA, 827. A characteristic finding in SpA is inflammation of cardingle structures of the joint, in propose to the carding perceptions any agreement in a structure of the structure of the pathol title for new HLA-B27-restricted number performs any another includes structure of the structure of the structure pathol as a structure of the structure within were also detectible by HLA iteramer things or vote as well as a structured, market structure of the structure during for any market structure of the within were also detectible by HLA iteramer things or vote as well as in structured, market and HLA-S27 restructed (2017 + 1000 - 10000 - 1000 - 10000 -




Some further nudge is required, such as: a local inflammatory insult from expression of a cytokine or co-stimulatory molecule

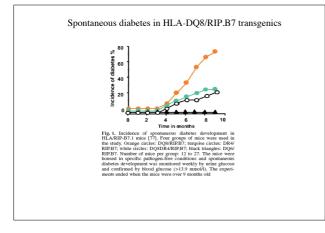

injection of self-peptide

expression of a cognate, pathogenic, autoimmune T cell receptor.

We generated a spontaneous, humanised transgenic model of MS by co-expression of HLA-DR15 and a human T cell receptor specific for HLA-DR15/MBP 85-99

In Vivo Evidence for the Contribution of Human Histocompatibility Leukocyte Antigen (HLA)-DQ Molecules to the Development of Diabetes

By Li Wen,* F. Susan Wong,[‡] Jie Tang,* Ning-Yuan Chen,* Martha Altieri,* Chella David,¹ Richard Flavell,^{1§} and Robert Sherwin*


J. Exp. Med. © The Rockefeller University Press • 0022-1007/2000/01/97/08 \$5.00 Volume 191, Number 1, January 3, 2000 97–104 http://www.jem.org

-A really significant paper on HLA transgenics for analysing autoimmunity

In vivo evidence for the contribution of human histocompatibility leukocyte antigen (HLA)-DQ molecules to the development of diabetes.

Wen L, Wong FS, Tang J, Chen NY, Altieri M, David C, Flavell R, Sherwin R.

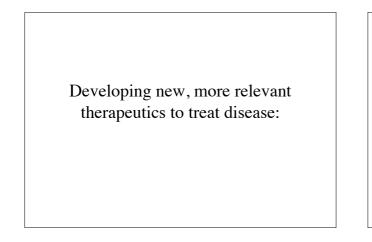
Section of Endocrinology, Department of Internal Medicine, the. Yale University Shool of Medicine, New Haven, CT Although DQA1*0301/DQB1*0302 is the human histocompatibility leukocyte antigen (HLA) class II gene most commonly associated with human type 1 diabetes, direct in vivo experimental evidence for its diabetogenic role is lacking. Therefore, we generated C57BL/6 transgenic mice that bear this molecule and do not express mouse major histocompatibility complex (MHC) class II molecules (DQ8(+)/mII(-)). They did not develop insulitis or spontaneous diabetes. However, when DQ8(+)/mII(-) mice were bred with C57BL/6 mice expressing costimulatory molecule B7-1 on beta cells (which normally do not develop diabetes), 81% of the DQ8(+)/mII(-)/B7-1(+) mice developed spontaneous diabetes.

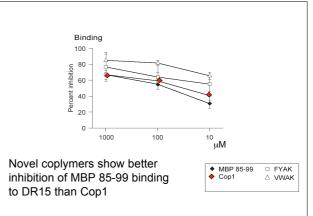
Diabetologia (2004) 47:1476-1487 DOI 10.1007/s00125-004-1505-5

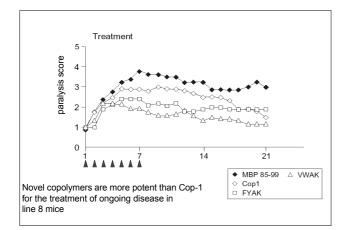
Diabetologia

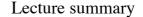
Review

What can the HLA transgenic mouse tell us about autoimmune diabetes?


F. S. Wong¹ · L. Wen²


¹ Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bri ² Section of Endocrinology, Yale School of Medicine, New Haven, USA


Abstract


Type I diabetes mellitus is a polygenic disease storagby associated with the class II molecules D8.3, at and the linked DQ2. 8 alleles. These molecules play an important role in presentation of peptide angigens after intracellular processing to CD4 T lymphocytes. A number of in vitro approaches have been used to elucidate the molecular basis for the association of particriom Type I diabetes mellitus. These have focused on the structure of the angigen-presenting molecules, to gether with their peptides. Blinding studies, peptide elution, molecular modelling and crystallisation of the peptide MIC complex have between them made it peptides. MIC complex have between them made it examine the stability of binding of peptides from putative autoantigens. It is difficult to study the role of these molecules in vivo in humans, and HLA trans, and HLA trans, and HLA trans, problem. Studies of mice expressing the HLA class. It alleless associated with diabets have shown that the presence of HLA molecules alone does not cause discase except in the presence of an iset "msull", each associate the presence of an iset "msull", each precipited discase in the absence of the HLA class. It transgene. HLA transgenic mice offer a way to belies, date the in vivo role of these molecules, and could help the development of targeted timumotherapy.

Keywords Autoimmunity \cdot HLA \cdot Transgenic mouse \cdot Type 1 diabetes mellitus

- In many (or most) autoimmune diseases, the strongest genetic association is with the genes in the HLA region •
- Several other genes will also be involved, also environmental factors (infection) .

- (infection)
 The HLA associations are generally assumed to relate the classical function of these gene products in antigen presentation to T cells
 So called 'humanised' HLA transgenic mice thus offer the chance of mimicking this event in an in vivo model
 This is important for epitope prediction, analysis of pathogenic mechanisms and design of therapeutics
 In (almost) no case is simple expression of the predisposing HLA transgene sufficient to give disease some other trigger is needed. This may involve immunising with self antigen, expression of the cognate TCR, or expression of a cytokine or co-stimulatory molecule.