TB/HIV

BSc Infection and Immunity

25th November 2011

•Some basics of HIV and TB

•Recent advances in Diagnostics

•TB prevention in PLHW

•The timing of HAART in patients with TB

•MDR/XDR and TMC207

HIV and TB

From Immunity: The Immune Response in Infectious and Inflammatory Disease by DeFranco, Locksley and Robertson

HIV

Risk of TB increases from time of HIV infection

Imperial College London

Sonnenberg, 2005

HIV increases risk of recurrence, particularly reinfection

Imperial College London

Sonnenberg, 2001

Just a reminder on TB.....

Tuberculosis: discrete states?

The organism: MTB

The disease

Latent TB Infection

TB: a spectrum of disease

Imperial College London

Barry et al , Nat Rev Biol 2009

Latent TB Infection (LTBI) – part of a continuum

Imperial College London Barry et al, Nat Rev Biol 2009

HIV and TB in the world

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion shattoorver on the part of the World Headb Organization concerning the legal status of any country, tentury, edg or area or of its authorities, or concerning the definition of its bootless or boundaries. Duthed lases on maps represent approximate border less for abich these may not yet but all agreement.

Data Source: WHO / UNAIDS Map Productor: Public Health Mapping and GIS Communicable Diseases (CDS) World Health Organization

World Health Organization

Source: WHO

HIV Prevalence in TB cases

FIGURE 1.3

Estimated HIV prevalence in new TB cases, 2007

Imperial College London

Source: Stop TB

Immunology

Impact of CD4 T cell depletion (and recovery on HAART)

Direct effects on innate immunity

Impact on other aspects of cellular immunity

	Number positive cytol	(%) with kine response	Crudo odda		Adjusted adds	
Cytokine antigen	HIV+ (n = 22)	HIV- (n = 75)	ratio (95% confidence interval)	P*	ratio† (95% confidence interval)	P‡
IFN-1						
PPD	3 (14)	46 (61)	0.10 (0.03-0.37)	< 0.001	0.12 (0.03-0.40)	< 0.001
CFP⁵	1 (4)	32 (45)	0.06 (0.01-0.46)	0.001	0.05 (0.01-0.46)	< 0.001
IL-2						
PPD ¹¹	4 (19)	17 (25)	0.69 (0.20-2.34)	0.76	1.15 (0.28-4.80)	0.84
CFP	1 (5)	12 (18)	0.23 (0.03-1.88)	0.26	0.26(0.03-2.55)	0.19
IL-5						
PPD	3 (14)	16 (21)	0.58 (0.15-2.22)	0.55	0.35 (0.08-1.56)	0.15
CFP	2 (9)	6 (8)	1.15 (0.22-6.14)	0.78	2.57 (0.35-18.97)	0.37
IL-10					. ,	
PPD	10 (45)	13 (17)	3.97 (1.42-11.14)	0.01	7.63 (1.91–30.48)	0.002
CFP	15 (68)	49 (65)	1.14 (0.41-3.14)	0.99	1.35 (0.43-4.22)	0.61
TNF-α			. ,		. ,	
PPD	5 (23)	19 (25)	0.87 (0.28-2.67)	0.97	0.82 (0.22-3.13)	0.77
CFP	10 (45)	39 (52)	0.77 (0.30–2.00)	0.77	0.50 (0.16–1.52)	0.21

Table 3	Effect of HIV on	cytokine responses to	tuberculin	(PPD) (10	μg/ml) and	culture filtrate	proteins ((CFP) (10	μg/ml)
---------	------------------	-----------------------	------------	-----------	------------	------------------	-------------	----------	--------

*P value for crude odds ratio.

+Adjusted for BCG scar status, illness (well vs all illness, including probable/possible TB), lymphocyte count.

*P value for the adjusted odds ratio.

§4 missing values (ELISA failed for 4 HIV-negative cases).

¹9 missing values (1 HIV-positive and 8 HIV-negative cases, excluded because of high, non-specific IL-2 production).

Imperial College London

Elliott IJTLD 1999

HIV associated with impaired BAL T cell response

A-PPD, B-BCG-specific

Imperial College London

Kalsdorf Ajccrm 09

HIV reduces apoptosis in human alveolar macrophages

Imperial College London

Patel JI 2007

Recent advances in diagnostics

Clinical history Chest X ray Skin test Smear microscopy Culture, sensitivity and ID

In the setting of HIV.....

Clinical history Chest X ray

Skin test Smear microscopy Culture, sensitivity and ID

- Less likely to be classical
- More likely extrapulmonary,
 X ray changes variable
- More likely negative
- Less sensitive

Symptoms and signs often absent in population with low CD4 count (data from a number of cohorts starting HAART in Africa)

Goletti et al PloS One 2008 Sensitivity of IGRAs for active tuberculosis

Quantiferon Gold 78.1% (95% CI 70.7, 84.3)T SPOT85.1% (95% CI 79.2, 89.9)

Smear negative disease more common with HIV

Imperial College London

Source: USAID

Potential for urine diagnostics?

Imperial College London

Reither BMC ID 09

New molecular diagnostics

Current interest in applicability of new Molecular technologies to bring diagnosis closer to point of care

Source: Cepheid, Boheme et al 2010

In well resourced settings modern diagnostics perform well

In resource poor settings very few are usable

GeneXpert is being scaled up in SA

Prevention of TB in PLWH

- Reduce HIV transmission
 - Behavioural/partner interventions, condoms, etc
 - Biomedical prevention of HIV acquisition (vaccines, microbicides)
 - Biomedical prevention of transmission (HSV, antiretrovirals, etc)
 - HIV case detection (increasing VCT)
- Earlier initiation of antiretrovirals (POPART)

Biomedical Prevention of TB in setting of HIV

- Vaccination strategies
 - BCG
 - Subunit vaccine
 - Vaccine pipeline
 - M vaccae
- Antibiotics prevention
 - Early initiation of HAART
 - Isoniazid preventative therapy
 - Other preventative therapy
 - New drugs

-Infection control (particularly healthcare settings)

TB incidence rates & cases prevented per 100 pys of HAART

Imperial College London

Badri, Wilson, Wood Lancet 2002

Treatment of latent TB infection in HIV-infected reduces development of active TB (or can prevent re-infection)

Debate over best way to implement IPT in both resource rich and resource poor settings

Effort to prevent a single case of TB quite substantial

Needs exclusion of subclinical/active TB to prevent delivery of isoniazid to patients with disease..... that's a problem where the problem is worst

Two most popular regimens

Isoniazid for 6/12 Rifampicin and Isoniazid for 3/12

Study or subgroup	Treatment (INH)	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I PPD+					
Hawken 1997	5/67	8/69		6.3 %	0.64 [0.22, 1.87]
Mwinga 1998	4/52	11/60		8.2 %	0.42 [0.14, 1.24]
Pape 1993	2/38	6/25	·	5.8 %	0.22 [0.05, 1.00]
Whalen 1997	7/536	21/464	_ -	18.0 %	0.29 [0.12, 0.67]
Subtotal (95% CI)	693	618	•	38.3 %	0.36 [0.22, 0.61]
Total events: 18 (Treatment ((INH)), 46 (Control)				
Heterogeneity: Chi ² = 1.88,	df = 3 (P = 0.60); $I^2 = 0.0\%$				
Test for overall effect: $Z = 3.7$	78 (P = 0.00015)				
2 PPD-					
Fitzgerald 2001	6/126	4/111		3.4 %	1.32 [0.38, 4.56]
Gordin 1997	4/260	6/257		4.8 %	0.66 [0.19, 2.31]
Hawken 1997	11/235	8/224		6.6 %	1.31 [0.54, 3.20]
Mwinga 1998	14/178	17/166		14.1 %	0.77 [0.39, 1.51]
Pape 1993	2/20	5/35		2.9 %	0.70 [0.15, 3.28]
Rivero 2003	3/83	4/77		3.3 %	0.70 [0.16, 3.01]
Whalen 1997-anergy	9/395	10/323		8.8 %	0.74 [0.30, 1.79]
Subtotal (95% CI)	1297	1193	-	43.9 %	0.86 [0.59, 1.26]

Imperial College London

Akolo et al Cochrane

Treatment of TB/HIV

Challenges in TB/HIV management

Timing of treatment initiation

Drug interactions

Overlapping toxicity

Duration of treatment – adherence

Health care resources

Observational studies

Manosuthi et al., J Acquir Immun Defic Syndr 2006 Velasco et al., J Acquir Immun Defic Syndr 2009 Yotebieng et al., AIDS 2010

Randomised controlled trials

SAPIT trial (Abdool Karim et al., NEJM 2010, 2011) CAMELIA trial (NEJM, 2011) TBM/HIV Vietnamese (Torok et al , CID 2011) ACTG A-5221 (Havlir, NEJM 2011) TB HAART (WHO/TDR) n=1900 Africa Uganda (NIAID) n=350 TIME trial (Thailand) n=210 Mexico (Instituto Nacional de Enfermedades Respiratorias), n=160 642 patients with TB starting ART

3 arms for randomisation :

Early integrated (HAART within 4 weeks of TB treatment) Late integrated (HAART within 4 weeks of continuation) Sequential

Stopped early due to increased mortality in sequential arm

Imperial College London

Karim et al NEJM 2010 & 2011

SAPIT 003

Imperial College London

Karim et al NEJM 2010

A bit controversial.....

Expressed concern about the equipoise of the study....

Investigators argued that at time of study WHO guidelines were unclear on the timing

Others disagreed...

AIDS RESEARCH

Bioethicists Assail a Celebrated TB/HIV Treatment Trial

Science 2010

Follow-up study

Science 2010

Follow-up study

Imperial College London

NEJM 2011

RCT in Cambodia of 661 patients diagnosed with TB

Low median CD4 count (25cell/ul)

Randomised to early (2 weeks) vs late (8 weeks) for ART

IRIS more common in early arm but easily managed

CAMELIA Study

Figure 3. Kaplan-Meier Survival Curves: CAMELIA Study

Imperial College London

Blanc et al AIDS XVIII 2010

ACTG 5221

Open label RCT comparing

Early (within 2 weeks of TB treatment) Late (within 8-12 weeks of TB treatment)

809 subjects in Africa, S America, N America and Asia

Median CD4 77

ACTG 5221

Imperial College London

Havlir NEJM 2011

TB meningitis and HIV in Vietnam

To determine if early initiation of ART reduces mortality in HIVassociated tuberculous meningitis at 9 months

Conducted at 2 centres in Ho Chi Minh City, Vietnam

Randomised double-blind placebo-controlled trial with 2 parallel arms: immediate ART versus deferred ART (2 months) stratified by severity of disease

Adjunctive corticosteroids

Grade 1 TBM 0.3mg/kg/day tapered over 6 weeks Grade 2 or 3 TBM 0.4mg/kg/day tapered over 8 weeks

Pneumocystis prophylaxis Co-trimoxazole from week 4 if baseline CD4 <200 cells

Imperial College London

Torok et al CID 2011

TB meningitis and HIV in Vietnam

- Mortality at 9 months (126 each arm)
 - 76 in immediate arm
 - 70 in deferred arm
- Hazard ratio 1.12 (95% CI 0.81 – 1.55), p = 0.52
- KM survival estimates at 9 months
 - 35.2% in immediate arm
 - 40.3% in deferred arm
- Similar in per protocol analysis

High rate of HCV co-infection

Imperial College London

Torok et al in press

MDR/XDR and HIV

Definitions

Some basics

First line medications

Rifampicin Isoniazid Pyrazinamide Ethambutol

(R) (H) **MDR-TB** (Z) (E)

MDR is predicted to become more common: notifications

WHO (2009)

And will (probably) continue to increase

 The targets/milestones for scaling-up treatment of MDR-TB in the Global Plan are based on updated projections produced in March 2009, in preparation for a ministerial meeting on MDR/XDR-TB held in Beijing, China in April 2009.

WHO (2009)

The bigger problem is MDR/HIV

	Tugela Ferry	KwaZulu Natal	South Africa
MDR	269	4,701	17,615
XDR	350	656	996
Total	619	5,357	28,611

2005-2007

Imperial College London

Source: Gerry Friedland

Date	Treatment	Started	Stopped	Event
16/9	R.H,Z,E	R,H,Z,E		TB diagnosis
24/9	R,H,Z,E, <u>Lfx</u> , <u>Am</u>	Lfx,Am		INNO- LIPA.rif
26/9	Z,E, <u>Cm,Mfx</u> , Pto	Cm,Mfx,Pto	R,H,Lfx,Am	ITU EFV/FTC/TV F
2/10	E, <u>Cm,Cs</u>	Cs	Z,Mfx,Pto	Hepatitis EFV>Kaletra
10/10	E, <u>Cm,Cs,Lfx</u> , Pto	Pto		LFT's normal
15/10	<u>Cm,Cs,Lfx,P</u> <u>AS</u>	PAS	E,Pto	H,E,Pto resistance
18/10	<u>Cm,Cs,Lfx,L</u> <u>zd</u>	Lzd	PAS	Unable to pass PAS down NGT
2/11	<u>Cm,Cs,Mfx</u>	Mfx	Lfx,Lzd	Lfx>Mfx Pancytopenic
12/11	<u>Mfx,PAS,Lzd</u>	PAS,Lzd	Cm,Cs	ARF/conf TVF stopped

New Drugs

8 week, multi-centre, placebo controlled trial

1 week lead in (TB treatment stopped)

Stratified by centre and extent of lung disease

Arm 1: TMC207 400mg od weeks 1 and 2, then 200mg 3/week Arm 2: Placebo

Preferred background: kanamycin, ofloxacin, ethionamide, pyrazinamide and cycloserine or terizidone modified by DST

New Treatment Strategies

Renovated multi-story building

MDR Treatment Initiations Hlabisa 2001-8

Source: Heller et al (2010)

Decentralised MDR programme

Source: Heller et al (2010)

Diagnostics are improving but availability still limited by costs

Prevention by IPT probably underused

MDR increasingly important problem

Drug options limited but improving

Thank you

Questions?