Critical roles of dendritic cells in the initiation of the adaptive immune responses

Fang-Ping Huang Division of Immunology & Inflammation Ext. 32397 *Email: fp.huang@imperial.ac.uk*

Outlines

- Signals required for initiating the adaptive immunity
 - Ag recognition (Signal 1)
 - Co-stimulations (Signal 2...)

Models of T-B cell cooperation

- The 'original' model
- The 'modified' model
- The 'contemporary' model
- DC Initiator of the adaptive immune responses
 - Basic & uniquely combined immunobiological properties
 - A link between the innate & the adaptive immune systems
 - The activator of naïve T cells

Types of immunity - Speed, Strength, Specificity & Memory

- Innate (natural)
 - Features: early, rapid but limited in strength, 'non-specific'
 - Players: Macrophages, polymorphs, mast cells, NK cells etc
- Adaptive (acquired)
 - Features:
 - Specificity & memory
 - Take time but powerful once initiated
 - Players:
 - **B cells:** humoral immunity (Ab production)
 - Cytotoxic T cells (CD8⁺): Cell-mediated immunity (CMI)
 - Helper T cells (CD4+): Central roles in immune responses

T_H Cells Play a Central Role in Immune Responses

("Immunobiology", by Janeway, Travers, Walport & Capra)

Question 1:

How is an adaptive immune response initiated?

Ag recognition alone (Signal 1) is <u>not sufficient</u> to initiate an immune response (e.g. Ab response)

→ "Signal 2..." is needed

T-dependent Ab responses – early findings

- Importance of thymus in immune responses
 - Miller JF (1961)
- Importance of circulating lymphocytes in Ab responses
 - Gowans J (1963)
- Phenomenon of T-B cell co-operation
 - Davies AJS (1964)
 - Claman HN (1966)
 - Miller JF & Mitchell GF (1967)
- *'Hapten-carrier effect'* \rightarrow *The 'Linked recognition'*
 - Landsteiner K (1868-1943)
 - <u>Mitchison NA (1971)</u>

T-B cell cooperation

The Ab response to a thymus-dependent Ag requires two different cell populations

The "Hapten-carrier effect"

(late 60/70s)

DNP: A hapten of di-nitrophenyl group BSA: Bovine serum albumin OA: Ovalbumin

The "original" 2-signal model (Bretscher P & Cohn N, 1970)

2nd signal ('co-stimulation')

Finding:

T cell Ag recognition is MHC-restricted

(Doherty PC & Zinkernagel RM, 1974/5)

Question 2

How could T and B cells recognize the same Ag if T cells recognized only processed Ag (small peptide) presented by MHC?

Linked recognition - The 'Carrier-priming' experiment

TNP: A hapten of tri-nitrophenyl group

(Mitchison NA. Eur J Immunol. 1971)

The "modified" model

Another problem:

Resting B cells can not activate naïve T cells, or vice versa

How is a <u>naive</u> T cell activated?

Naïve lymphocyte

Lymphocyte that has not encountered its specific antigen

<u>Armed effector lymphocyte</u>

Activated & differentiated lymphocyte that may respond to antigen binding alone to produce effector functions

Memory lymphocyte

Lymphocyte that has experienced specific antigen previously but needs to be triggered to differentiate again to become effector cell

Dendritic cell: Initiator of the adaptive immunity

Ralph M Steinman & Zanvil A Cohn (Rockefeller, 1973)

J Exp Med. 1973 May 1;137(5):1142-62.

J Exp Med. 1974 Feb 1;139(2):380-97. J Exp Med. 1974 Jun 1;139(6):1431-45. J Exp Med. 1975 Apr 1;141(4):804-20. J Exp Med. 1979 Jan 1;149(1):1-16.

DC immunobiology (basic properties)

- Sentinel position: Constant surveillance
 - Distribution throughout peripheral tissues
- Endocytic activities: Ag uptake
 - Micro/Macro-pinocytosis (soluble Ags)
 - Phagocytosis (pathogens, dying cells, ICs etc)
 - Receptor-mediated endocytosis
 - C-type lectins (DEC205, Mannose receptor, DC-SIGN etc)
 - Fc receptors
 - Complement receptors
 - Scavenger receptors
- Migratory property: Ag transport
 - from peripheral tissues to secondary lymphoid organs

Skin DC

- The Langerhans' cells (Paul Langerhans, 1868)

Secondary lymphoid organs where DC & naïve T cells meet:

- Highly organized cellular distribution

- Site of naïve T cell activation

B: B cell area T: T cell area

F: B cell follicle GC: germinal centre

DC migrating in the lymph

A model of authentic DC generation: (2 steps) (1) Mesenteric lymphadenectomy (2) Thoracic duct cannulation

(<u>J Exp Med.</u> 1983 Jun 1;157(6):1758-79.)

DC - a link between the innate-adaptive immune systems

Sentinel - Constant surveillance
 Endocytic - Ag uptake

Migratory - Ag transport

Unique location in LN (*T areas*)

High MHC I & II → Professional APC for T cell activation

Antigen presenting cells

- Broad sense:
 - Virtually all cells (nucleated) can be "APC" (MHC Class I)
- More specific:
 - <u>APC:</u> cells present antigen to activate (or inactivate) T cells
 - <u>Target cells:</u> infected or tumor cells to be killed by T cells
- "Professional" APC (MHC Class I & II):
 - B cell
 - Macrophage
 - DC

MHC class I & class II expression

Tissue	MHC class I	MHC class II
Lymphoid tissues		
T cells	+++	+*
B cells	+++	+++
Macrophages	+++	++
Other antigen-presenting cells (eg Langerhans' cells)	+++	+++
Epithelial cells of the thymus	+	+++
Other nucleated cells		
Neutrophils	+++	-
Hepatocytes	+	_
Kidney	+	-
Brain	+	_ +
Non-nucleated cells		
Red blood cells		_

DC: The TRUE professional APC

- Only cell type capable of activating naïve T cells in vivo

Sentinel - Constant surveillance
 Endocytic - Ag uptake
 Migratory - Ag transport

YG Huang

Unique location in LN (T areas)
 High MHC I & II (Potent APC for Tc & Th)

Crucial co-stimulations for Naïve T activation B7: CD80 (B7.1), CD86 (B7.2)

The contemporary model

- Small pharmacologically active products of cells
- Nomenclature & classification
 - Interleukins: interleukin 1 37 (IL-1 IL-37)

interferons, TNF etc.

- Lymphokines: produced by lymphocytes
- Monokines: produced by monocytic/phagocytes
- Chemokines: CXC (IL-8), CC (DC-CK, MDC), CX3C (Fractalkine)

T-B cell cooperation

T-T cell cooperation

Co-stimulations

- Cellular interactions/triggering other than Ag-specific stimulation

B7:CD28 - Naïve T cell activation

- CD40:CD40L B cell growth & differentiation
- ICOS:ICOS-L Effector T & B cell functions
- Cytokines & the receptors Immune cell functions

Adhesion molecules ...

T cell:APC interactions

Naïve & activated T cells expressed different types of adhesion molecules

DC: an unique Ag processing & presenting machine

In immature DC:

- Attenuated lysosomal potential for Ag degradation
 Ag sequestered from lysosome for extended period
- Regulated cathepsin S activity by Cystatin C
 - delaying the cleavage of MHC II- associated Ii chain
 - favouring MHC II transport to lysosome

(Mellman I & Steinman RM, Cell. 2001; 106:255-8)

Ag 'cross-presentation' - DC breaks the rules

Craig RR. Nature 425, 351-52 (2003)

Two CLASSICAL pathways for Ag processing & presentation

 "MHC class I pathway" → CD8⁺ T cells (Endogenous/cytosolic/TAP-dependent pathway)

 "MHC class II pathway" → CD4⁺ T cells (Exogenous/endocytic/TAP-independent pathway)

Antigens cross-presented

- Virus-infected apoptotic cells
- Cell death due to normal cell turnover
- Apoptotic tumour cells
- Transplantation Ags
- Endocytosed Ag: small fragments (3-12 KD)

Cross-priming for inducing effective CTL immunity

(Heath WR & Carbone FR. Nat Rev Immunol, 2001)

Cross-presentation of self-antigens leads to induction of CTL tolerance to peripheral tissues

(Heath WR & Carbone FR. Nat Rev Immunol, 2001)

Further questions:

DC heterogeneity?

How DC may induce immunity, & tolerance?

Summary I

DC – Initiator of the adaptive immunity (The TRUE professional APC)

Basic properties:

- **Sentinel position** (Constant surveillance)
- Endocytic (Ag uptake)
- **Migratory** (Ag transport)

Unique features:

- Unique location in the secondary lymphoid organs (*T area*)
- High surface MHC Class I, Class II (Ag presentation)
- **Constitutive expression of B7** (Co-stimulations)
- **Special Ag processing machine** (Unique Ag processing capacity)
- Ag cross presentation (Th, Tc)
- A link between the innate & the adaptive immune systems

Co-stimulations

<u>Definition:</u>

• Cellular interactions/triggering other than Ag-specific stimulations.

<u>Types:</u>

- CD28:B7 (CD80, CD86) Naïve T cell activation
- ICOS:ICOSL Effector T & B cell functions
- **CD40:CD40L** *B* cell growth & differentiation
- Adhesion molecules Cellular interactions
- **Chemokines & receptors** *Cell migration & homing*
- Interleukins & receptors Effector functional molecules
- etc...