Constitutional syndromes predisposing to acute leukaemia

> Tassos Karadimitris Department of Haematology Imperial College London Hammersmith Hospital

#### **Pathways of tumorigenesis**





#### Hanahan and Weinberg, Cell 2011

#### Pathways of tumorigenesis



#### Hanahan and Weinberg, Cell 2011

#### Leukaemogenesis

Proliferation

Oncogenes

- Evasion of apoptosis
- Tumour suppressor genes
- Differentiation arrest
- DNA repair genes

## Genetic defects predisposing to leukaemia

#### **Tumour suppressor genes**

- Li-Fraumeni-P53
- Neurofibromatosis-NF1
- **DNA repair genes**
- Fanconi Anaemia
- Ataxia Teleangiectasia ATM
- **Ribosomopathies**
- Blackfan-Diamond anaemia
- Shwachmann-Diamond s
- Dyskeratosis Congenita

#### In utero mutations

TEL-AML1

#### Aneuploidy

Down syndrome

## DNA repair genes and leukaemia

- Fanconi anaemia
- Others
  - Ataxia telangiectasia
  - Bloom syndrome
  - Nijmegen breakage syndrome
  - Ataxia-Telengiectasia



### **DNA damage and DNA repair**



Jan H. J. Hoeijmakers, Nature, 2001; 41: 366-374

#### Repair of dDNA strand breaks



Jan H. J. Hoeijmakers, Nature, 2001; 41: 366-374

#### Fanconi anaemia

autosomal recessive

congenital malformations

progressive bone marrow failure

 increased malignancy, including leukaemia and MDS

#### Size of Protein Position on Gene Prevalence Chromosome Product (kD) Activity FANCA 16q24.3 163 Core complex member; required for FANCD2-66% **FANCI** ubiquitination 2% 95 FANCB Xp22.31 Core complex member; required for FANCD2-**FANCI** ubiquitination FANCC 10% 9q22.3 63 Core complex member; required for FANCD2-**FANCI** ubiquitination HR mediator; FANCN interactor; functions down-FANCD1 2% 13q12-13 380 stream of ubiquitination 2% 3q25.3 155 Ubiquitinated after DNA damage FANCD2 FANCE 2% 6p21-22 60 Core complex member; required for FANCD2-FANCI ubiquitination; binds directly to FANCD2 FANCF 2% 11p15 42 Core complex member; required for FANCD2-**FANCI** ubiguitination FANCG 9% 68 Core complex member; required for FANCD2-9p13 **FANCI** ubiquitination FANCI <2% 15q25-26 Ubiquitinated after DNA damage 140 <2% 17q22-24 140 Helicase; BRCA1 interactor; functions down-FANC stream of ubiquitination FANCL 2p16.1 43 Core complex member; required for FANCD2-0.2% FANCI ubiquitination; ubiquitin-ligase activity 250 FANCM 0.2% 14q21.3 Helicase; localizes the core complex to DNA; required for FANCD2-FANCI ubiquitination FANCN FANCD1 and BRCA1 interactor; functions down-<2% 16p12.1 140 stream of ubiquitination

#### Table 1. Characteristics of the 13 Genes in Fanconi's Anemia.\*

D'Andrea, AD. N Engl J Med 2010



#### FA genes and DNA repair

Wang W, Nat Rev Genet. 2007 (10):735-48



### Fanconi anaemia



increased sensitivity to DNA damage by cross-linking agents eg diepoxybutane, MMC

### Fanconi anaemia

- Haematological abnormalities
  - IFAR study 1994, 388 pts
  - Presentation abnormalities
  - 85% haem abnormalities, median age 7 yrs

| 38% |
|-----|
| 53% |
| 5%  |
| 2%  |
|     |

- Actuarial risk of MDS/AML by 40yrs: 52%
- Epigenetic silencing of FA genes in sporadic cancers and leukaemias

# Ribosome biogenesis and ribosomopathies

• Ribosomes: ribonucleoproteins

- rRNA: splice products of same precursor RNA
- Ribosomal proteins (80 genes)
- Small and large subunits

 Nucleolus: the ribosome biogenesis factory

#### Ribosome biogenesis and ribosomopathies



François-Michel Boisvert et al, Nat Rev Mol Cell Biol. 2007 8(7):574-85

#### **Ribosome biogenesis in the yeast**



#### **Ribosomal proteins, MDM2-p53 and Nucleolar Stress**



Fumagalli and Thomas, Semin Hematol 2011

#### **Ribosomal proteins, MDM2-p53 and Nucleolar Stress**



## **Diamond-Blackfan anaemia**

- Early infancy
- Anaemia, macrocytosis, low retics
- Red cell aplasia with a paucity of erythroid precursors
- Red cell adenosine deaminase (ADA) activity elevated
- Associated congenital anomalies
- Hb may improve upon treatment with corticosteroids
- Spontaneous remission in a subset of patients
- Increased risk of AML and osteosarcomas
- Aplastic anemia in some patients

## **Molecular genetics of DBA**

Heterozygous mutations: AD

 -RPS19 (25%)
 -RPS24 (2%)
 -RPL35A
 -RPS17 (<2%)</li>
 -RPL5 & 11

- Haploinsufficiency
- Many cases arise spontaneously
- Yeast RPS19 is required for maturation of the 18S rRNA
- Defective ribosome biogenesis is toxic to cells

# Erythropoiesis and Cellular defect in DBA



Johan Flygare and Stefan Karlsson, Blood, 2007 109: 3152-3154

# Shwachman-Diamond syndrome

Mutations in SBDS gene; autosomal dominant

#### Bone marrow failure

-Neutropenia most common-Cytopenias may be intermittent

#### Exocrine Pancreatic insufficiency

- -Early infancy
- -Steatorrhea and failure to thrive
- -Function may improves with age
- metaphyseal dysostosis

 Increased risk of developing aplastic anaemia and MDS/AML

# Proposed mechanism for the cellular consequences of mutations in Shwachman-Bodian-Diamond syndrome



JOURNAL OF THE AMERICAN SOCIETY OF HEMATOLOGY

Narla A , Ebert B L Blood 2011;118:4300-4301

©2011 by American Society of Hematology

## **Dyskeratosis congenita**



d





e



| Table 1. Summary of clinical featuresassociated withdyskeratosis congenita                                                                                |                                          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| Key clinical features                                                                                                                                     | Percentage of patients affected          |  |  |  |
| Main mucocutaneous triad<br>Skin pigmentation<br>Nail dystrophy<br>Mucosal leukoplakia                                                                    | 89%<br>88%<br>78%                        |  |  |  |
| Additional clinical features <sup>a</sup><br>Bone marrow failure<br>Pulmonary disease<br>Premature loss of teeth<br>Premature hair loss/greying<br>Cancer | 85.5%<br>20.3%<br>16.9%<br>16.1%<br>9.8% |  |  |  |
| <sup>a</sup> There are also many other so<br>in any given patient                                                                                         | omatic abnormalities                     |  |  |  |

Marrone A and Dokal I. Expert Rev Mol Med. 2004 Dec 20;6(26):1-23.

### Telomeres

- Stabilize the chromosome ends to prevent their shortening during replication,
- protect chromosome ends from DNA damage-induced breaks
- Inhibit end-to-end fusions
- 6-basepair repeated sequences (TTAGGG)
- Shorten with each cell division; maintained by the telomerase enzyme



Age (yr)

Calado and Young NEJM 2009

Α

#### **Telomere maintenance**



Marrone A and Dokal I. Expert Rev Mol Med. 2004 Dec 20;6(26):1-23.

#### **Telomere maintenance failure**



# Summary of dyskeratosis congenita subtypes

| DC subtype      | frequen<br>cy | phenotype      | Chromos<br>location | RNA/protein<br>product |
|-----------------|---------------|----------------|---------------------|------------------------|
|                 |               |                |                     |                        |
| X-linked DC     | 35%           | DC, HH         | Xq28                | Dyskerin               |
| AD-DC           | 5%            | DC, AA,<br>MDS | 3q26                | TERC                   |
| AR-DC           | <5%           | DC, HH         | 5p15                | TERT                   |
|                 |               |                |                     |                        |
| Uncharacterised | 60%           | DC, HH         | Unknown             | Unknown                |

AA, aplastic anaemia; AD, autosomal dominant; AR, autosomal recessive; DC, dyskeratosis congenita;
HH, Hoyeraal–Hreidarsson syndrome; MDS, myelodysplastic syndrome; TERC, RNA component of telomerase.

#### **DC: telomere maintenance and ribosome biogenesis**





## DC and Telomere maintenance: Anticipation



## Fetal origin of childhood leukaemia

- chromosome translocations and covert leukaemic clones generated during normal fetal development
- subsequent events may be required to generate leukaemia
- t(12;21) childhood B ALL; TEL-AML (RUNX1) fusion -arises in utero in 1% of infants
   -only 1% develop leukaemia

### **Genetics of TEL-AML1**



#### **TEL-AML1 fusion detected by FISH**



# Fetal origin of childhood ALL: Same breakpoints in monozygotic twin siblings



### Molecular pathogenesis of TEL-AML1 leukaemia



# In utero TEL-AML1 only the first step to leukaemia



Greaves M, Nat Rev Cancer. 2006 Mar;6(3):193-203