Introduction to the Physics of MRI

Jo Hajnal jhajnal@ic.ac.uk

MRI

- Put subject in scanner
 - Large magnetic field (B_0) creates magnetization (M).
- Excite MR process
 - Apply radio frequency (RF) magnetic fields to rotate M away from B₀, typically 90° flip angle.
- Perform spatial encoding to make image
 - Apply phase encoding and frequency encoding gradients.
- Analyze data and display the image.

MRI signals come from Hydrogen

- Has magnetic moment
- Present in living matter
- Sufficient quantity to provide strong MR signal

1 gram of water contains 10²² hydrogen nuclei

Precessional Motion

Larmor Equation

 $\omega = \Upsilon \mathbf{B}$

 ω = Larmor frequency (megahertz) (omega) Υ = Gyromagnetic ratio of nuclei (MHz)

(gamma)

B = Field strength (Tesla)

i.e. The Precessional Frequency of Hydrogen 63.86MHz = 42.58 $\left(\frac{MHz}{T}\right) \times 1.5T$ $42.58MHz = 42.58 \left(\frac{MHz}{T}\right) \times 1.0T$ $21.29MHz = 42.58 \left(\frac{MHz}{T}\right) \times 0.5T$ $9.79MHz = 42.58 \left(\frac{MHz}{T}\right) \times 0.23T$

Absence of Magnetic Field

In the absence of a magnetic field the nuclear spins are randomly oriented.

Net Magnetization

MRI magnets

•Electromagnets

Made with superconducting wire

•Need to be kept cold

Coils in bath of liquid helium

Always on

RF Excitation

Received Signal

Relaxation Process

Time course behaviour

Making useful signals

Contrast between tissues

- Timing of RF pulses controls contrast between tissues
- Depends on
 - T1, manipulated by TR
 - T2, manipulated by TE
- Also
 - proton density (total available signal)
 - Flow, manipulated by RF pulse
 - Other factors......

Tissue Relaxation Times at 1.5 Tesla

Tissue Type	T1 (ms)	Signal		T2 (ms)	Signal
Adipose tissues	245	High		70	Low
Liver	490			40	
Kidneys	650			70	
White matter	780			90	
Muscles	880			50	
Gray matter	920			100	
Whole blood - oxy	1350			200	
(Whole blood - deoxy)	(1350)			(50)	
Cerebrospinal fluid	4000			4000	
Pure water	2500			2500	

Change scan parameters to change contrast

T₁weighted

T₂ weighted

FLAIR-T2

Image Formation

- •Use Larmor Frequency
- •Resonant Frequency is proportional to B₀
- •Manipulate frequency by changing magnetic field

Gradient Coils

(Gradient Turned Off)

Why Gradients are used?

In the absence of the gradient both samples sense the same field...

...resulting in a signal consisting of one frequency.

...resulting in a signal consisting of two frequencies.

Role of Gradients

Gradients allow spatial localization of the NMR signal

3 Sets of Gradient Coils:

Slice Select gradient provides excitation of a single slice in space

Frequency and Phase Encode gradients encode spatial location of each point in the image plane

Slice Selection

Design RF excitation pulse to excite a range of frequencies and combine with gradient

The slice of tissue imaged is defined by changing the strength of the magnetic field along the patient.

Slice Selection

Frequency Encoding

Only one in-plane direction

- Cannot frequency encode in two directions at one time
- Synthesise a second direction using multiple repeated measurements
 - Take a closer look at frequency encoding
 - •The signal is acquired in time
 - •time point by time point sequentially

Phase encode gradient

Gradient Echo Sequence

Frequency analysis by Fourier Transform

Raw signal or Fourier domain "K-space"

Image domain

Single-slice imaging

Multi-slice imaging

Gradient echoes and B₀ inhomogeneity

Non-uniformity in the main magnetic field causes image distortion and signal loss

distortion

Signal loss due to tissue/bone susceptibility effects of 1:10⁻⁹

Gradient Echo Sequence

Spin Echo Sequence

Spin Echo

- Advantages & Limitations
 - Image Quality
 - Artifacts
 - Flexible sequence
 - True T2 contrast
 - Scan Times- Long

e.g. TR = 2400msec 256 PE lines Acq time >8min

Spin Echo

Read

Fast Spin Echo

Fast Spin Echo

- Multiple Echoes within the same TR
- Each echo individually phase encoded
- Each echo fills one line of K space
- ETL (echo train length = number of echoes/shot)
- Effective TE
- Scan Time Calculation
 - TR x (number of PE) / ETL

FSE examples

Proton DensityFSE •TR 1200mec •1024 PE lines •6 mins

MRI has great flexibility

- Image in any plane
- Image anatomy
- Flow (angiography, perfusion)
- Microscopic motion (water diffusion)
- Brain Function (fMRI)
- Use with contrast agents to increase sensitivity to disease

Questions?