Graham R. Williams

Molecular Endocrinology Group Imperial College London

Hypothalamic-pituitary-thyroid axis

Major T3 target tissues

BMR
Thermogenesis
Adipogenesis
Vasculature
Skin
Hair
Bone marrow
Kidney

Lung

T3 acts via nuclear receptors

- TR α and TR β
 - Encoded by THRA (NR1A1, Ch17q11.2) and THRB (NR1A2, Ch3p24.3)
 - Bind T3 with high affinity (K_d 0.1nM)
 - Temporo-spatial regulation of expression during development
 - Expression levels vary between tissues, but $TR\alpha$ is ubiquitous, $TR\beta$ more restricted
 - Nuclear localization

Hypothalamic-pituitary-thyroid axis

Thyroid hormone receptor isoforms

TRs bind TREs in target gene promoters

Consensus TREs

AGGTCATGACCT

AGGTCA NNNN AGGTCA

TGACCT NNNNNN AGGTCA

Endogenous TREs

AGGTGA NNNN AGGACA NN AGCCCT

GGGTTA NNNNAGCACA

Palindromic TRE

TRE DR+4

TRE Inverted Pal+6

αMHC TRE

ME TRE

-T3
Unliganded TR represses basal gene expression

RXR TR HDAC Histone deacetylation

TRs act as repressors and T3-inducible transcription factors

• TR α and TR β

- Multiple TR isoforms
 - TR α 1 and TR β 1, β 2, β 3 are true receptors
 - TR α 2, $\Delta \alpha$ 1, $\Delta \alpha$ 2 and TR $\Delta \beta$ 3 may act as antagonists
- Nuclear localization is constitutive
- Bind to TREs of varying structure
- Interact with co-repressors, co-activators and other nuclear proteins that may be tissue-specific
- Unliganded apoTR is a repressor
- T3-stimulated positive or negative regulation of T3 target gene transcription
 - Positive TREs in GH, DIO1, ME, MHC genes
 - Negative TREs in TRH, TSHB genes

Control of T3 action – ligand availability

- Thyroid hormone transport
 - Organic anion transporting polypeptides (OATP)
 - OATPC1 has high affinity for T4 and rT3 and facilitates influx and efflux
 - May regulate T4 transport across blood-brain barrier
 - **MCT8**
 - High affinity for T4, T3, rT3, T2
 - Widely expressed
 - MCT8 mutations cause severe X-linked psychomotor retardation with elevated serum T3, slightly low T4 and normal TSH

Control of T3 action – metabolism

- lodothyronine deiodinases
 - D1
 - Main source of plasma T3 in hyperthyroidism
 - D2
 - Paracrine pathways of D2-mediated T3 production and action control cochlear development and hormone action in brain
 - D3
 - Controls T4 and T3 clearance and prevents intracellular T3 production (eg pregnancy)
 - High expression causes consumptive hypothyroidism

Control of T3 action – TRs and human disease

RTH

- Autosomal dominant THRB mutations cause RTH, in which negative feedback regulation of TSH is disrupted
 - Mutations interfere with T3 binding, co-repressor release or coactivator recruitment
 - Mutant TRβ acts as dominant-negative antagonist
 - Phenotype is variable
- THRB mutation absent in 15% of cases
- THRA mutations not described

Cancer

Somatic mutation or aberrant expression of *THRB* identified in thyroid, liver and renal cell tumours

Tissue specific TR action

- Lessons from murine gene targeting
 - ApoTR
 - TR α
 - TR β
 - Physiological relationship between TR α and TR β responsive tissues

ApoTR – hormone deficiency is worse than receptor deficiency

Phenotype of congenitally hypothyroid Pax8^{-/-} mice is more severe than mice lacking all TRs

- Deletion of TR α in Pax8-/-TR α 0/0 compound mutants ameliorates Pax8-/- phenotype
- ApoTR α 1 plays an important role during development

Bone is a $TR\alpha$ target tissue

WT

 $TR\alpha^{0/0}$

Deletion of TR α

- Growth retardation
- Delayed ossification
- Impaired bone resorption
- High bone mass

Cochlea and retina are TRβ target tissues

Cochlea

Retina

Deletion of TRβ

- Impaired auditory evoked brainstem response
- Absent M-opsin and redistribution of S-opsin cones in retina

TR isoform-specific target tissues

Thyroid hormones and bone

Children

- Hypothyroidism
 - Growth arrest, delayed bone age, epiphyseal dysgenesis, immature body proportion
- Thyrotoxicosis
 - Accelerated growth, advanced bone age, short stature, craniosynostosis

Adults

- Thyrotoxicosis
 - Accelerated bone loss, osteoporosis with increased susceptibility to fracture

Thyroid hormones are essential for skeletal development and regulate bone mass and mineralization in adults

Thyroid hormone receptor isoforms

Relationship between TR α and TR β

Forrest et al 1996 EMBO J 15:3006-15 Abel et al 2001 J Clin Invest 107:1017-23

Bassett et al 2007 Mol Endocrinol 21:1095-107 Bassett et al 2007 Mol Endocrinol 21:1893-904

Bone is a $TR\alpha$ target tissue

WT $TR\alpha^{0/0}$

Deletion of TRβ causes an opposite phenotype

$TR\alpha$ and $TR\beta$ knockout mice

Thyroid status of TR $\alpha^{\text{0/0}}$ and TR $\beta^{\text{-/-}}$ mice

	T4 (μg/dl)	T3 (ng/ml)	TSH (mU/L)	
	(μ g/αι)	(119/1111)	(1110/L)	
WT	3.8±0.1	8.4±0.3	25±3.0	Euthyroid
$\alpha^{0/0}$	0.9x	1.2x	0.9x	Euthyroid
0-/-	Av	Gy	42×	DTU
β-/-	4x	6x	12x	RTH

Deletion of TRα or TRβ affects growth

TRα^{0/0}
Transient growth delay

TRβ-/Persistent short stature

3%

Deletion of TRα or TRβ affects ossification

TRα^{0/0}
Delayed
endochondral ossification

TRβ-/Advanced
endochondral ossification

Deletion of $TR\alpha$ or $TR\beta$ affects bone mass

β-/-WT Osteoporosis **Osteosclerosis**

Bone mineralization density by qBSE

Tissue fixed in 70% ethanol
Embedded in poly-methyl-methacrylate
Blocks were diamond micro-milled until optically flat
Digital SEM (Zeiss DSM962) with solid state BSE detector
qBSE has a 0.46μm resolution (DXA 200μm and μCT 10μm)

Deletion of $TR\alpha$ or $TR\beta$ affects mineralization

Deletion of TRα or TRβ affects bone resorption

Deletion of TRα or TRβ affects osteoclasts

 $TR\alpha^{0/0}$ WT TRβ-/-Endosteal Trabecular TRAP Osteoclast resorption surface

Osteoclast resorption surface

Osteoclast resorption surface

Osteoclast resorption surface Osteoclast resorption surface 60% Osteoclasts/mm 40% 20% $\alpha^{\text{0/0}}$ WT β-/- $\alpha^{\text{0/0}}$ WT $\alpha^{\text{0/0}}$ β-/-

Summary

• TR $\alpha^{0/0}$

- <u>Delayed</u> ossification, reduced calcified bone and growth retardation
- <u>Increased</u> adult bone mass (reduced bone resorption)

• TRβ-/-

- Advanced ossification, increased calcified bone, accelerated early growth but persistent short stature
- Reduced adult bone mass and mineralization (increased bone resorption)

Mechanism of T3 action in bone in vivo

FGFR expression in $TR\alpha^{0/0}$ bone

FGFR expression in $TR\beta^{-/-}$ bone

 $TR\beta^{-/-}$ skeleton is thyrotoxic

Receptor mRNA expression in bone

Conclusion

- Deletion of TRα
 - Causes skeletal hypothyroidism despite normal thyroid status because T3 action in bone is disrupted
- Deletion of TRβ
 - Causes osteoporosis indirectly because elevated thyroid hormones act in bone via $TR\alpha$

Systemic and tissue-specific actions of T3 receptors are inter-dependent

Hypothalamic-pituitary-thyroid axis

Hypothalamic-pituitary-thyroid axis

Thyroid hormone or TSH?

TSHR-/- mice

- TSHR-/-
 - Thyroid hypoplasia
 - fT₄ & fT₃ undetectable, TSH 500x
 - Severe growth delay
 - Die by 10w unless given TH at weaning
 - High bone turnover osteoporosis (aged 7 weeks)
- TSHR+/-
 - Euthyroid
 - Normal growth
 - Intermediate skeletal phenotype
- TSH inhibits
 - Osteoclast formation, osteoblast differentiation

Lack of TSHR results in osteoporosis

TSH preserves bone

Thyroid hormone or TSH?

- TSHR-/- mice
 Congenital hypothyroidism
 Treated with TH from weaning
 Analyzed during growth
- Graves' disease
 Osteoporosis
 TSHR stimulating antibodies
- cAMP responses
 TSHR secondary messenger
- TRβ-/- mice
 3x fT4/fT3 and 10xTSH
 Osteoporotic
- TRα^{0/0} mice
 Euthyroid, TSH normal
 High bone mass

Data from TSHR^{-/-} mice inconsistent with clinical observations & with TRKO mice

hyt/hyt and Pax8-/- mice

- hyt/hyt
 - TSHR Pro556Leu mutation does not bind TSH
 - Hypoplastic thyroid & congenital hypothyroidism
 - fT₄ 0.1x, fT₃ 0.05x, TSH 1900x

Elevated TSH non-functional TSHR

- Pax8-/-
 - Thyroid follicular cell agenesis
 - Congenital hypothyroidism
 - fT₄ & fT₃ undetectable, TSH 2300x

Elevated TSH active TSHR

If TSH is important *in vivo* these mice must have opposite skeletal phenotypes

Both hyt/hyt and Pax8-/- mice have growth retardation

Both hyt/hyt and Pax8-/- mice have delayed ossification

Both hyt/hyt and Pax8-/- mice have reduced cortical bone

Both hyt/hyt and Pax8-/- mice have similar bone microarchitecture (BSE SEM)

Both hyt/hyt and Pax8-/- mice have reduced bone mineralization density (qBSE)

Conclusion

- Pax8^{-/-} (↑TSH, active TSHR)
- hyt/hyt (↑TSH, non-functional TSHR)

have similar, not opposite, phenotypes

- Growth retardation & delayed ossification
- Reduced cortical bone
- Impaired trabecular bone remodelling
- Reduced bone micro-mineralization density
- Reduced bone volume fraction

The skeletal phenotype of congenital hypothyroidism is independent of TSH

Conclusion

• TRα is the major functional T3 receptor in bone

The hypothalamic-pituitary-thyroid axis regulates bone via the actions of T3 and TRα