

Ubiquitin in NF-kB activation

Henning Walczak Tumour Immunology Unit Division of Immunology and Inflammation

Inflammation and immune regulation are linked

Composition of the TNF-receptor complex

The moTAP technology

Increased specificity of the TNF-RSC isolation by moTAP

Identification of three possible novel components of the native TNF-RSC

Two of them were HOIL-1 and HOIP

HOIL-1 and HOIP are recruited to the TNF-RSC in a stimulation-dependent manner

U937 cells

HOIL-1 and HOIP interact and form an E3-ligase

Kirisako et al. (EMBO 2006):

- HOIL-1 and HOIP interact
- HOIL-1 and HOIP form a linear ubiquitin assembly complex (LUBAC)

Tokunaga et al. (Nat Cell Biol 2009):

• LUBAC acts as an E3 for NEMO

Lo et al. (Mol Cell 2009) Rahigi, Ikeda et al. (Cell 2009)

• NEMO binds more efficiently to linear ubiquitin than to K63-linked ubiquitin

Haas, Emmerich et al. (Mol Cell 2009)

- LUBAC is recruited to the TNF-RSC in a TRADD/TRAF2/cIAP-dependent manner and stabilises the complex
- LUBAC is required for efficient TNF-induced NF-κB and JNK activation and inhibits induction of cell death by TNF

HOIL-1 recruitment depends on the catalytic activity of cIAP1/2

HOIL-1 and HOIP are recruited to the TNF-RSC by cIAP-generated Ubiquitin chains via the TRADD-TRAF2-cIAP signalling axis

HOIL-1 and HOIP are recruited to the TNF-RSC by cIAP-generated Ubiquitin chains via the TRADD-TRAF2-cIAP signalling axis

HOIL-1/HOIP knock-down reduces TNF-induced NF-κB and JNK activation

HEK293 cells

HOIL-1 and HOIP are crucial regulators for a number of TNF-dependent genes

HeLa cells

Absence of HOIL-1 renders cells more sensitive to TNF-induced cell death

MCF-7 cells

Sharpin, a possible third novel component of the native TNF-RSC

Composition of the CD40-receptor complex

HOIL-1, HOIP and Sharpin are also possible novel components of the native CD40-RSC

Sharpin, HOIP and HOIL-1 are recruited to the TNF-RSC with similar kinetics

Sharpin, HOIP and HOIL-1 are recruited to the CD40-RSC in the human B cell line Raji and in primary human B cells

Raji cells

Primary human B cells

Sharpin is homologous to HOIL-1

Gerlach, Cordier et al., Nature, 2011

Sharpin

HOIP

(SIPL-1)

Endogenous Sharpin, HOIP and HOIL-1 form part of a pre-formed cytoplasmic high-molecular weight complex and can be co-immunoprecipitated with each other in a stimulationindependent manner

LUBAC is a tripartite complex

Sharpin and HOIP are still recruited to the TNF-RSC in HOIL-1 knockdown cells

HeLa cells

Knockdown of HOIP abolishes recruitment of Sharpin and HOIL-1 to the TNF-RSC

MW [kDa]

HeLa cells

Expression and recruitment of HOIL-1 and HOIP to the TNF-RSC is attenuated in Sharpin-deficient *cpdm* MEFs

Murine embryonic fibroblasts (MEF)

Recruitment of Sharpin, HOIP and HOIL-1 to the TNF-RSC depends on cIAP1/2 and on HOIP

HOIP is also able to form linear ubiquitin chains in combination with Sharpin

... and it does so on NEMO, at least in vitro

Nice, ... but does it also happen in the native TNF-RSC?

Combined moTAP-2D-MRM approach

Endogenous RIP1 and NEMO are linearly ubiquitinated in the native TNF-RSC

Phenotype of Sharpin mutant *cpdm* Mice

- Spontaneous base pair deletion in the Sharpin gene leads to severe chronic proliferative dermatitis (*cpdm*)
- Multi-organ inflammation (apart from skin also affects liver, forestomach, oesophagus, etc.)
- Defective organisation of lymphoid tissue (lack of well-formed follicles, germinal centres and follicular DCs)
- absence of marginal zone in the spleen; absence of Peyer's patches
- Increased cell death of keratinocytes

Sharpin is required for effective TNF -induced NF-κB and JNK activation

wildtype cpdm TNF 0, 5, 30, 30, 30, 30, MW [kDa] 39 ρΙκΒα 39-ΙκΒα pJNK 39-Actin 50 40 TNF A20 mRNA (fold-induction) 25 20 0 3 4 ICAM-1 ⁵ 3 0 2 0 2 4 1 1 20 ΙκΒα 10 0 2 3 TNF [hr] 2 3 TNF [hr] 0 1 4 0 1 4

MEFs

Primary splenic B cells

TNF and IL-1β-induced NF-κB activation is impaired in primary *cpdm*-derived keratinocytes cells

TNF

IL-1β

Increased TNF-induced cell death in cpdm MEFs

Loss of Sharpin results in a cell death-favouring dysregulation of TNF-induced signalling

Phenotype of Sharpin mutant *cpdm* Mice

- Spontaneous base pair deletion leads to severe chronic proliferative dermatitis (*cpdm*)
- Multi-organ inflammation (apart from skin also affects liver, forestomach, oesophagus, etc.)
- Defective organisation of lymphoid tissue (lack of well-formed follicles, germinal centres and follicular DCs)
- absence of marginal zone in the spleen; absence of Peyer's patches
- Increased cell death of keratinocytes

TNF deficiency corrects the inflammatory phenotype in *cpdm* mice

Immunological alterations of *cpdm* mice are independent of TNF

Peyer's Patches

	Spleen [g] weight	Peyer's Patches
Wt	0,08 0,075 0,08	8/20 cm 5/20 cm 7/30cm
cpdm	0,31 0,164 0,44	0/20 cm 0/20 cm 0/20 cm
cpdm TNF ^{-/-}	0,23 0,124 0,19	0/17 cm 0/20 cm 0/40 cm

Summary

- LUBAC is a new component of the TNF and CD40 receptor signalling complexes
- LUBAC recruitment to these complexes depends on cIAPs
- LUBAC deficiency attenuates gene induction by TNF, CD40L and IL-1 β
- and renders cells more susceptible to TNF-induced cell death
- TNF deficiency corrects the inflammatory but not the immunological abnormalities observed in *cpdm* mice

Conclusions

- This identifies linear ubiquitination as a third type of ubiquitination required for physiological innate and adaptive immune signalling
 - => A physiological role for linear ubiquitination

for inflammation in *cpdm* mice

Conclusions

- This identifies linear ubiquitination as a third type of ubiquitination required for innate and adaptive immune signalling
 - => A physiological function for linear ubiquitination

- Linear ubiquitination balances the output of TNF signal transduction
- Lack of LUBAC activity causes a cell death-favouring dysregulation of TNF signalling responsible for inflammation
- => Identification of a new aetiology for autoimmunity that depends on pro-inflammatory cell death rather than pro-inflammatory gene induction

