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From: Mechanotransduction in vascular physiology and atherogenesis
Cornelia Hahn & Martin A. Schwartz
Nature Reviews Molecular Cell Biology 10, 53-62 (January 2009)

A section of an artery wall shows the endothelial cells that form
the inner lining and align longitudinally, and vascular smooth
muscle cells that form the outer layers and align circumferentially.
Pressure (p) is normal to the vessel wall, which results in
circumferential stretching of the vessel wall. Shear stress () is
parallel to the vessel wall and is exerted longitudinally in the
direction of blood flow.

Forces acting on the artery wall
Note that longitudinal tension is not shown!
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183 4.3 Arterial pulse propagation

Box 4.1 Solution of Equation (4.10)

Here we present some of the mathematical details of the solution of Equation

(4.10), with QH = Q1 sin(ωt). Since the system is linear, and the forcing term

QH is periodic in ωt , we expect that the solution will also be periodic in ωt ,
and therefore write

Q = Q1[A1 sin(ωt) + A2 cos(ωt)], (4.12)

with A1 and A2 to be determined. Substitution of Equation (4.12) into

Equation (4.10) yields two linear equations for A1 and A2

RCωA1 = −A2

−RCωA2 = 1 − A1. (4.13)

Solution of Equations (4.13) and substitution into Equation (4.12) yields

Q(t) = Q1

1 + (RCω)2
[sin(ωt) − RCω cos(ωt)]

= Q1

1 + (RCω)2

[
cos φ sin(ωt) − sin φ cos(ωt)

cos φ

]
(4.14)

where φ = tan−1(RCω). This can be rewritten slightly by using standard

trigonometric identities to yield the unsteady term in Equation (4.11).

effects of reflection. It is observed that pressure pulses are reflected and altered at

bends and junctions throughout the arterial tree; consequently, the exact form of the

arterial distension versus time waveform is different at each site in the arterial tree

(Fig. 4.14). To analyze such effects, we must consider the propagation of elastic

waves within the artery wall. To understand this phenomenon, we must first learn

a little bit about the elastic properties of the arteries, to which we now turn.

4.3.3 Arterial wall structure and elasticity

The artery wall is a three-layered structure (Figs. 2.57 and 4.15 [color plate]).

The innermost (blood-contacting) layer is known as the tunica intima, and in a

young, healthy artery is only a few micrometers thick. It consists of endothelial

cells and their basal lamina, containing type IV collagen, fibronectin, and laminin.

The endothelial cells have an important barrier function, acting as the interface

between blood components and the remainder of the artery wall. The middle layer

is the tunica media, which is separated from the intima by a thin elastin-rich

need to
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Figure 4.15
Cross-section through the wall of an artery, demonstrating the tunicas intima, media, and adventitia, as well as elastic
lamellae within the media. The elastin appears black in this preparation, which has been stained with Verhoeff’s stain and
lightly counter-stained to make the collagen appear blue. IEL, internal elastic lamina. Modified from Vaughan [19] by
permission of Oxford University Press, Inc.
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Figure 4.14

Simultaneous pressure and blood velocity waveforms at selected points in the human arterial tree. All waveforms were
measured in the same patient except for those from the right renal artery and the right common iliac artery. Changes in
the instantaneous pressure are approximate indicators of changes in arterial caliber, and thus of local blood storage.
From Caro et al. [17], based on data reported in Mills et al. [18]. Reproduced with kind permission of Oxford University
Press and the European Society of Cardiology.

ring known as the internal elastic lamina. The outermost layer is known as the

tunica adventitia, which is separated from the media by the outer elastic lamina.

The adventitia is a loose connective tissue that contains type I collagen, nerves,

fibroblasts, and some elastin fibers. In some arteries, the adventitia also contains

a vascular network called the vasa vasorum, which provides nutritional support to

the outer regions of the artery wall. Biomechanically, the adventitia helps to tether

the artery to the surrounding connective tissue.
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185 4.3 Arterial pulse propagation

Figure 4.16

Pressure–radius relationship for the carotid arteries of normotensive and hypertensive rats measured under static
conditions. The symbols are experimental measurements averaged over six or more rats, the error bars represent
standard deviation, and the lines are the fit of a constitutive model to the experimental data. Each graph has three
datasets with different vascular smooth muscle (VSM) tone: fully relaxed VSM (©), normal VSM tone (∗), and
maximally contracted VSM (�). It can be seen that the state of the vascular smooth muscle has a profound effect on the
mechanical properties of the artery wall, and that the contribution of vascular smooth muscle is different in normotensive
and hypertensive arteries. Reproduced from Zulliger et al. [20] with permission of the American Physiological Society.

The media is the most important layer for determining the biomechanical prop-

erties of the artery wall. It contains smooth muscle cells, elastin, types I, III, and V

collagen, and proteoglycans. Smooth muscle cells are oriented circumferentially

and, as can be seen from Fig. 4.16, have an important influence on arterial stiffness,

especially in the smaller arteries. They also provide control of arterial caliber. The

collagen is oriented largely circumferentially [21] with a slight helical pattern. The

relative proportion of elastin to collagen changes with position in the vascular tree:

in the dog, the proportion of elastin in the thoracic aorta is about 60%, but this

value decreases significantly near the diaphragm and then gradually falls to about

20% for the peripheral arteries [8]. As elastin content falls, smooth muscle content

increases, and arteries are, therefore, classified as being either elastic (the large

central arteries) or muscular (the smaller peripheral arteries).

As we will see in Chapter 9, most biological materials demonstrate highly non-

linear stress–strain behavior, and the artery wall is no exception. Figure 4.16 shows

pressure–radius data gathered from static inflation tests on excised rat carotid

arteries. In these tests, a segment of artery is excised and mounted on a test apparatus

that allows the artery lumen to be pressurized while the artery is bathed in a

physiological saline solution. The outer arterial diameter is then measured as the

lumenal pressure is increased. For a linearly elastic, thin-walled artery undergoing
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small deformations, a linear pressure–radius relationship is expected. It can be seen

from the data in Fig. 4.16 that a linear relationship is not present, with the artery

experiencing significant stiffening as the lumenal pressure exceeds approximately

15 kPa (110 mmHg) in the relaxed state. This reflects the strain-stiffening behavior

of the collagen and elastin in the artery wall.

In addition to its non-linearity, the artery wall is anisotropic (stiffness is different

in different directions) and viscoelastic. Therefore, it is not possible to characterize

the stiffness of a given artery wall completely by a single number, such as a Young’s

modulus. Nonetheless, it is possible to make operational measurements of the

stiffness of the artery by observing the change in outer radius, �Ro, as the lumenal

pressure is varied. This leads to a quantity called the “pressure–strain” modulus,

E p, defined by [22]

E p = Ro

�p

�Ro

, (4.15)

where Ro is the average outer radius of the artery as the pressure is changed by �p.

Measured values of this quantity for arteries in humans are shown in Table 4.2.

Based on work by Bergel for the distension of an isotropic, thick-walled elastic

tube (see summary in Milnor [4]), Gow and Taylor [29] related E p to the incre-

mental Young’s modulus for the artery wall, Einc, by the expression

Einc = E p

2(1 − ν2)

(
1 − t

Ro

)2

1 −
(

1 − t

Ro

)2
(4.16)

where t is artery wall thickness and ν is Poisson’s ratio. This should be interpreted

as a circumferential elastic modulus: Eθθ . The value of the ratio t/Ro depends on

age and increases with distance from the heart, but a typical value for humans aged

36–52 years is approximately 0.15 [8]. Using this value, as well as a Poisson’s

ratio of 0.5, we compute from Equation (4.16) that Einc ≈ 4E p. Using this, as

well as the values in Table 4.2, we see that incremental Young’s modulus values

range from about 3 × 106 to 20 × 106 dynes/cm2 for the systemic arteries. A more

careful analysis, accounting for variations in wall thickness with position, gives

elastic modulus values between 8 × 106 and 25 × 106 dynes/cm2 [8]. Numerous

constitutive relationships for vessel walls have been developed and have been

summarized by Vito and Dixon [30].

4.3.4 Elastic waves

We now turn to the important question of how pressure pulses are propagated

throughout the arterial tree. As will be seen, they travel as transverse elastic waves
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Table 4.2. Values of the “pressure–strain modulus”, Ep, and other arterial parameters in humans. From
more complete listings in Milnor [4] and Nichols and O’ Rourke [8], except the values for aortic root.

Artery No.a R0 (cm)b Pressure Radial Ep (dyn/cm2)d Source
(mmHg) pulsation
(mmHg) (%)c

Aortic roote 1 1.6 – ±4.7 – Jin et al. [23]

Ascending
aorta

10 1.42 79–111 ±2.9 0.76 × 106 Patel and Fry [24]

Thoracic
aorta

12 1.17 98–174 ±2.6 1.26 × 106 Luchsinger et al. [25]

Femoral 6 0.31 85–113 ±0.6 4.33 × 106 Patel et al. [24]

Carotid 11 0.44 126–138 ±0.5 6.08 × 106 Patel et al. [24]

Carotid 16 0.40 96 ±7.4 0.49 × 106 Arndt [26]

Carotid 109 – – – 0.63 × 106 Riley et al. [27]

Pulmonary
(main)

8 1.35 16 ±5.6 0.16 × 106 Greenfield and
Griggs [28]

Pulmonary
(left)

5 1.07 25 ±6.2 0.17 × 106 Luchsinger et al. [25]

Pulmonary
(right)

13 1.13 27 ±5.8 0.16 × 106 Luchsinger et al. [25]

Pulmonary
(main)

8 1.43 18–22 ±5.4 0.16 × 106 Patel et al. [24]

a Number of arteries studied.
b Mean outer radius.
c Pulsation about the mean radius from normal pulse pressures (i.e., 100 × one-half the total radial excursion in each cardiac
cycle (systolic–diastolic) divided by the average radius).
d Calculated from Equation (4.15) using total excursion of pressure and radius during natural pulsations; therefore represents a
dynamic modulus.
e Measured using MRI.

within the walls of the artery. The physics is similar to the water hammer phe-

nomenon, except that essentially all the elastic energy is stored in the artery walls

rather than in compression of the blood.

To analyze elastic wave propagation in greater detail, we consider the simplest

possible case of a long straight tube with constant radius and a linearly elastic wall

material. We will suppose that the tube is filled with an incompressible inviscid

fluid. For the initial stages of the discussion, we will also suppose that the fluid

in the tube is (on average) at rest. In other words, there is no net flow in the tube,

although, as we will see, the fluid can oscillate back and forth. We also assume

that the pressure at one end of the tube is varied periodically, corresponding to the

heart pumping at the root of the aorta. As we show below, this periodic variation

Can table
heading
entries be
botom
justified? (Here
and in all
tables).
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Table 3.6. Typical hemodynamic parameters for selected vessels in a 20 kg dog and a 70 kg human
(surface area 1.8 m2). α is Womersley parameter (Section 3.2.3); ReD, Reynolds number (based on
vessel diameter) given as mean with peak value in parentheses. Values collated from a variety of
sources by Milnor [17]. Reproduced with kind permission of Lippincott Williams & Wilkins.

Dog Human

Velocity Velocity
α (cm/s)a ReD α (cm/s)a ReD

Systemic vessels

Ascending aorta 16 15.8 (89/0) 870 (4900) 21 18 (112/0) 1500 (9400)

Abdominal aorta 9 12 (60.0) 370 (1870) 12 14 (75/0) 640 (3600)

Renal artery 3 41 (74/26) 440 (800) 4 40 (73/26) 700 (1300)

Femoral artery 4 10 (42/1) 130 (580) 4 12 (52/2) 200 (860)

Femoral vein 5 5 92 7 4 104

Superior vena cava 10 8 (20/0) 320 (790) 15 9 (23/0) 550 (1400)

Inferior vena cava 11 19 (40/0) 800 (1800) 17 21 (46/0) 1400 (3000)

Pulmonary vessels

Main artery 14 18 (72/0) 900 (3700) 20 19 (96/0) 1600 (7800)

Main veinb 7 18 (30/9) 270 (800) 10 19 (38/10) 800 (2200)

a Velocities are temporal means with systolic/diastolic extremes in parentheses.
b One of the usually four terminal pulmonary veins.

downstream of severe stenoses [26]. The values in Table 3.6 are averages; it can be

appreciated from the range of reported values in Table 3.7 that significant variation

from one person to the next is typical.

Notably absent from the above list is the non-Newtonian nature of blood. How

important are the non-Newtonian characteristics of blood? Based on our discussion

above, it seems reasonable to treat blood like a Newtonian fluid so long as the

shear rate is greater than 100 s−1. The question then becomes whether this shear

rate is ever reached in the cardiovascular system. If it is, then we can, as a first

approximation, ignore the non-Newtonian effects of blood.

From the characteristic parameters for blood flow in several clinically important

large arteries, shown in Tables 3.6 and 3.7, we conclude that typical wall shear

stresses are in the range 1–15 dynes/cm2 for most arteries in humans. This cor-

responds to wall shear rates γ̇ from approximately 30 to 450 s−1. So the answer

to the question as to whether we can treat blood like a Newtonian fluid is: “most

of the time.” In other words, for most of the large arteries, we can ignore the

non-Newtonian nature of blood. More detailed analyses have confirmed that a

the  is the
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Table 3.7. Comparison of hemodynamic parameters in selected arteries in humans. Q, mean
(cycle-averaged) flow rate in ml/s; D, cycle-averaged diameter in mm; U0, mean (cycle-averaged)
velocity in cm/s; ReD, Reynolds number based on D, U0 and an assumed blood kinematic viscosity of
3.5 cStokes; τ , mean wall shear stress determined from τ = 8μU0/D = 32 μQ/π D2, in dyne/cm2 (this
formula for shear stress ignores approximately 10% error from mean flow–pulsatile interactions).
Reproduced from Ethier et al. [12] with permission from WIT Press, Southampton, UK.

Artery Q D U 0 ReD τ Comment and source

Common
carotida

6.0 6.3 19.3 347 8.6 Ultrasonography on young healthy
volunteers (D. Holdsworth,
unpublished communication, 1996)

8.7 7.3 20.7 432 7.9 Ultrasonography on 47 healthy
volunteers [18]

7.5 7.3 17.9 373 6.9 Doppler (flow) [18] and 2
transducer (diameter) [19]
ultrasonography on 35 normals

8.2 Milnor, Table 4.3 [17]

Superficial
femoralb

2.2 6.5 6.6 125 2.9 Color and B-mode ultrasonography,
scaled to match graft flow rates [20]

2.2 6.6 6.4 121 2.7 Ultrasonography on 4 healthy
volunteers [18]

5.2 6.5c 15.7 291 6.8 Doppler ultrasonography after
balloon angioplasty [21]

3.6 6.2 12.0 212 5.4 Catheter tip velocity probe (Milnor
[17], Tables 4.3 and 6.3)

Thoracic
aorta

45–93 23–28 8.9–18.4 640–1330 1.0–2.0 Biplanar angiography & cadaver
specimens [22,23]d

a Ignores flow entrance effects, but entrance length = 0.06 ReD = 24 diameters, so this is a small effect. Compare with mean wall
shear stress of 7 dyne/cm2 quoted in Ku et al. [10]
b First flow rate is suitable for diseased patients so is a lower bound for normals.
c Assumed value.
d Compare with mean wall shear stress of 1.3 dyne/cm2 quoted in Ku and Zhu [24].

Newtonian approximation is valid at the shear rates seen in medium-sized and

larger arteries [27, 28].

3.2.2 Steady blood flow at low flow rates

Although the non-Newtonian rheology of blood is not of primary importance in

most arteries, it is important at lower shear rates, for example such as might occur

at low flow rates in veins or in extracorporeal blood-handling systems. Here we
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Figure 3.9

Schematic of red cells in large and small vessels. Note the relative size of red cells and control volumes (dotted lines).

consider this low shear case, and use the Casson constitutive relationship to derive

the velocity profile for steady flow of blood in a large vessel or tube. It is recognized

that blood flow is unsteady within the cardiovascular system, and the question may

then be asked: What is the utility of studying steady flow of blood? The answer

is threefold. First, steady blood flow can occur in extracorporeal blood-handling

systems. Second, study of steady flow gives further insight into the importance of

non-Newtonian rheology without involving a great deal of mathematical compli-

cation. Finally, pulsatile blood flow can be decomposed into a steady component

and a zero mean-flow oscillatory component, and the following analysis addresses

the steady component.

A second question may be posed. Why restrict attention to flow in a large vessel

or tube? Implicit in use of Casson rheology to model blood is the assumption that

the fluid is a homogeneous continuum. This is true to a very good approximation

in large vessels, since the red cells are very much smaller than the vessel diameter.

In other words, on the scale of the vessel, the blood “looks” homogeneous, and we

can therefore average red cell effects over a control volume (Fig. 3.9), much as is

done in considering the continuum assumption in basic fluid mechanics. However,

this is not true in, for example, capillaries, where red cells occupy a substantial

fraction of the vessel.4 We see from the above discussion that a “large” vessel in

this context means a vessel with diameter “many times the size of a red cell,” for

example 100 times larger than a red cell.

In vivo, vessels have complex shapes, exhibiting branching and curvature. How-

ever, their essential nature is that they are tubes; consequently, as a crude first

approximation, it is acceptable to treat a vessel as a uniform cylinder. Hence, we

will restrict our attention to the steady laminar flow of blood in a long straight tube,

and ask: What is the velocity profile in such a flow? Mathematically, we denote the

4 This is another bizarre aspect of suspension rheology: flow patterns can be dependent on the particle volume fraction,

shear rate, and vessel size.

the
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Figure 3.10

Forces acting on a small element of fluid for steady, fully developed flow in a tube of radius R.

axial velocity by u and the radial position by r, and seek an explicit representation

of u(r).

At this point it is worth recalling the shear stress distribution for steady, fully

developed flow in a long straight tube of radius R. Considering a fluid element of

length δx and radius r, we identify the following forces acting on that element: a

pressure force pπr2 on the left face, a pressure force (p + δp)πr2 on the right face,

and a shearing force τ (r )2πrδx on the outer face (Fig. 3.10). Taking account of

directions, and noting that for steady fully developed flow all fluid elements must

experience zero acceleration and, thus by Newton’s second law, zero net force, we

may write

pπr2 + τ (r )2πr δx − (p + δp)πr2 = 0. (3.7)

Taking the limit as δx goes to zero, in which case δp/δx becomes the axial pressure

gradient, we obtain:

τ (r ) = r

2

dp

dx
. (3.8)

Note that this result is valid for all types of fluid, since it is based on a simple force

balance without any assumptions about fluid rheology (see Box 3.1).

Since the axial pressure gradient is a constant for steady, fully developed flow

in a tube, Equation (3.8) shows that the shear stress distribution within our model

vessel must take the form shown in Fig. 3.11. Evidently, τ = 0 at the center line

r = 0, and therefore, there must be a small region near the center line for which

τ < τy . If we call Rc the radial location at which τ = τy , the flow can then be

divided into two regions:

� r > Rc: fluid flows
� r � Rc: no flow, fluid travels as a plug.5

5 It must be remembered that the definition of flow is “continuous deformation in response to an applied shear stress.”

Therefore, a lump of fluid travelling as a solid mass is not flowing, even though it is moving. For this reason, the term

“plug flow ” to describe such motion is somewhat of a misnomer, but since it is in common use, we will adopt it here.

-
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Figure 3.11

Shear stress distribution, and regime of plug flow, for a Casson fluid in a long straight tube.

Box 3.1 Using Equation (3.8) to derive Poiseuille’s law for a
Newtonian fluid

Since Equation (3.8) is valid for any type of fluid undergoing steady, fully

developed flow, it can be used to derive Poiseuille’s law for a Newtonian fluid.

For such a fluid, τ = μ(du/dr ) and Equation (3.8) becomes

1

r

du

dr
= 1

2μ

dp

dx
. (3.9)

Now notice that the right-hand side of Equation (3.9) can only be a function

of x (the pressure must be uniform on cross-sections of the tube or a non-

axial component of the velocity would be generated), while for a fully

developed flow the left-hand side can only be a function of r. The only way

that a function of r can equal a function of x is if the function is a constant: that

is, the two sides of Equation (3.9) must be constant. This means that the

pressure gradient is a constant. Integrating Equation (3.9) once with respect to

r and requiring the velocity to be zero at the wall and to be symmetric about

the center line, we obtain the well-known parabolic velocity profile:

u(r ) = −dp

dx

R2

4μ

[
1 − r2

R2

]
. (3.10)

The last step is to compute the flow rate (Q) by integrating Equation (3.10)

Q = −π R4

8μ

dp

dx
. (3.11)

This is Poiseuille’s law. Recognizing that the pressure gradient is constant and

negative (for flow in the positive x direction), we can write −dp/dx = 
p/L ,

where 
p is the pressure drop over the tube length L.

-

flow of
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