Introduction to atherosclerosis

Dorian O. Haskard

Vascular Sciences Section National Heart and Lung Institute

Atherosclerosis – plan of talk/learning objectives

- Importance of atherosclerosis to human health
- Cellular pathology of atherosclerosis
- Link between cholesterol and inflammation
- Importance of blood flow
- Investigating molecular mechanisms

World disease burden

1990

Adapted from Lopez and Murray (1998) Nature Med 4: 1241

Risk Factors

Modifiable

Not modifiable

dyslipidaemiaAsmokingShypertensionGdiabetes mellitusvisceral obesitylack of exerciseraised homocysteine

Age Sex Genetics

PATHOLOGY

fatty streaks

intermediate lesion ulcerated plaque

CHOLESTEROL AND INFLAMMATION

Relative importance of risk factors

Danesh et al 2004 N Engl J Med 350:1387

History – the cholesterol hypothesis

N. N. Anitschkow Military Medical Academy of St Petersburg (circa 1904) Plaque from a rabbit fed cholesterol for 106 days and then chow for >2 years Low density lipoproteins (LDL) deposit in the subintimal space at sites of low/complex flow, and bind to matrix proteoglycans

From: Tabas, I. et al. Circulation 2007;116:1832-1844

LDL modification in the arterial wall happens before macrophage infiltration

MDA-lysine (oxidised LDL)

monocyte/møs

Napoli et al 1997 J Clin Invest 100:2680

Macrophage scavenger receptors

from Pluddemann et al (2007) Methods 43:207

Foam cells

from Dr Howard K

Foam cells

Faggiotto et al 1984 Arteriosclerosis 4:323

Homeostatic debris disposal

monocyte adhesion to endothelium

Juvenile rabbit

Courtesy of Peter Weinberg, Imperial College

Early lesions can move – ie they are reversible

Juvenile rabbit

Adult rabbit

Courtesy of Peter Weinberg, Imperial College

Inflammatory basis of atherosclerosis

Macrophage uptake of LDL

- Physiological uptake of LDL via LDL controlled by receptor down-regulation
- Uptake of oxidised LDL by scavenger receptors is not regulated and results in "foam cell" formation.
- Cholesterol-laden macrophages release cytokines (eg IL-1, TNF) and growth factors (eg PDGF), and die by apoptosis or necrosis

Main cellular players

- Vascular endothelial cells
 - Barrier function (eg to lipoproteins)
 - Leukocyte recruitment
- Platelets
 - Thrombus generation
 - Cytokine and growth factor release

Monocyte-macrophages

- Foam cell formation
- Cytokine and growth factor release
- Major source of free radicals
- Metalloproteinases
- T lymphocytes
 - Macrophage activation
- Vascular smooth muscle cells
 - Migration and proliferation
 - Collagen synthesis
 - Remodelling and fibrous cap formation

Inflammatory basis of atherosclerosis

Leukocyte-endothelial cell interactions

Courtesy of Prof Sussan Nourshargh

Leukocyte-endothelial cell interactions

137 endothelial cell genes regulated more than 4-fold by IL-1 De Martin et al (2004) ATVB 24:1192

IMPORTANCE OF BLOOD FLOW

Flow-related susceptibility of branch points and curvatures

Risk factors are general but atherosclerosis is focal

Courtesy of David Steinman University of Western Ontario

Effects of mechanical forces on endothelial function

Use of parallel plate flow chamber for studying endothelial cells under flow

Laminar flow suppresses proinflammatory gene expression but sustains cytoprotective responses in response to TNF α

proinflammatory getoes otective genes

Partridge et al (2007) FASEB J, 21:3553

High probability (HP)

Differential adhesion molecule expression in the murine aorta shown by *en face* immunostaining

PLAQUE DEVELOPMENT AND ANGIOGENESIS

Step-wise progression of atherosclerotic plaques

Vasa vasorum are the back-door for leukocyte recru

De Boer et al (1999) Cardiovasc Res 41:443.

Intraplaque haemorrhage contributes to plaque growth

Kolodgie et al 2003 N Eng J Med 349@2316

Natural history of atherosclerosis

INVESTIGATING MOLECULAR MECHANISMS

Mouse models of atherosclerosis

- ApoE-/-
 - 34kd component of VLDL and chylomicrons
 - ligand for LDL receptor
- LDL receptor -/-
 - Mutations in familial hypercholesterolaemia

Atherosclerosis in *Ldlr*^{/-} mice

wild-type

Ldlr-/- high fat 13 mo Ishibashi et al 1994 JCI 93:1885

Aortic valve

Influence of adhesion molecules, chemokines and cytokines on mouse atherosclerosis

Accelerators

Adhesion molecules

P-selectin E-selectin ICAM-1 VCAM-1

Chemokines & receptors MCP-1 CCR2 CXCR2 CX3CR1

Decelerators

IgM deficiency accelerates atherosclerosis

Lewis et al 2009 Circulation 120:417

Hypothetical model of the role of complement and IgM natural antibodies in atherosclerosis

Role of T lymphocytes in atherosclerosis

- Atherosclerotic plaques contain MHC Class II positive dendritic cells and T lymphocytes at all stages
- Plaque T cells show evidence of activation (eg HLA-DR, IFN γ)
- Plaque T cells are oligoclonal and ~10% react with oxidised LDL
- T cells may activate macrophages and VSMC (eg via CD40L-CD40 contact interactions)
- Activated T cells are present in the circulation during acute coronary syndromes (ie plaque instability)

Effects of CD4 T cell transfer

Zhou et al (2006) ATVB 26:864

Summary

• Atherosclerosis can be viewed as a dynamic chronic inflammatory disease of arteries

• The innate immune system regulates the safe disposal of lipoproteins and other debris from the arterial wall and is intrinsically protective

• Overdrive of the innate immune system leads to irreversible remodelling, and this may be accelerated by adaptive immune mechanisms

 The interplay between proinflammatory and wound healing pathways governs plaque stability