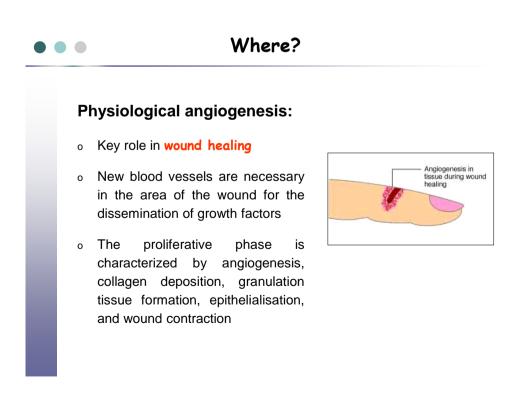
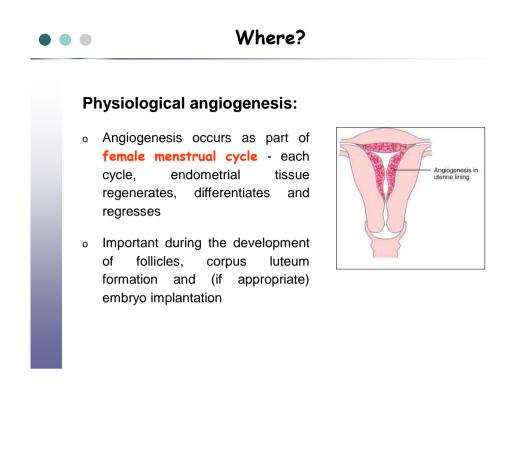
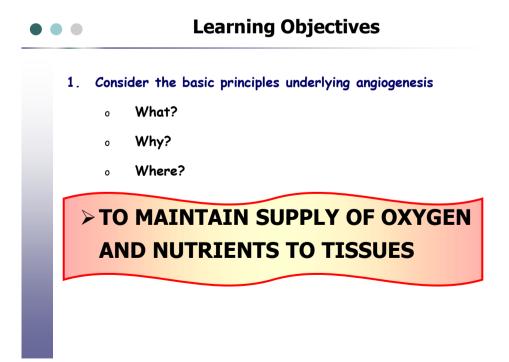
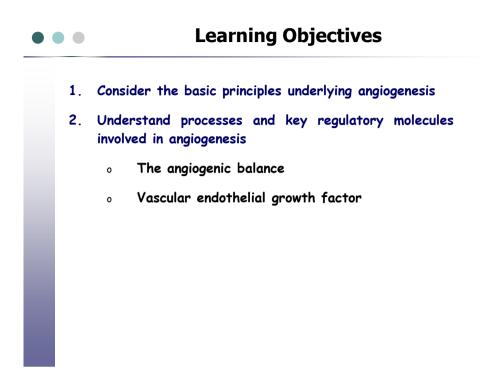
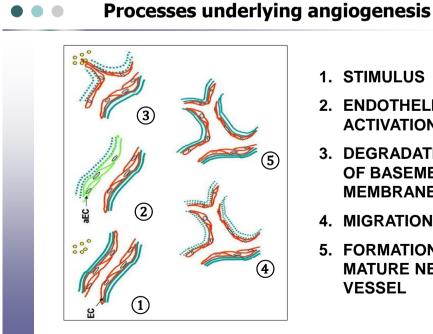

- More than 10¹² (1,000,000,000,000) endothelial cells line the inside of blood vessels
- Area covered equivalent to an area of 1000 m²
 in a 70kg adult
- In the adult, the proliferation rate of vascular endothelial cells is very low
- Turnover time can exceed 1000 days









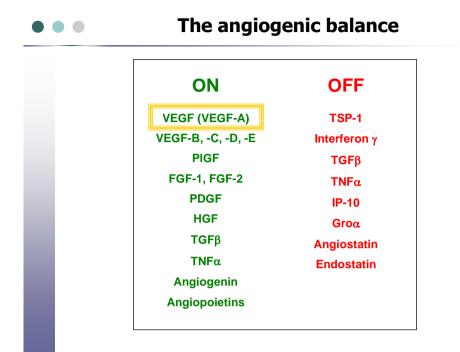


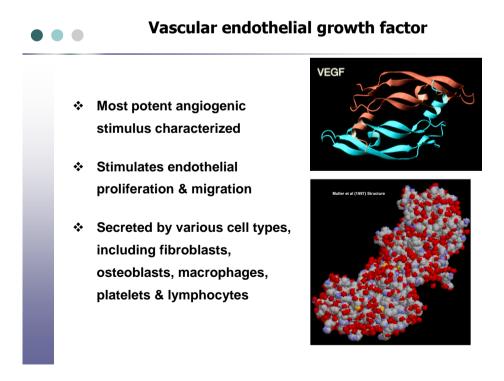
- 1. STIMULUS
- 2. ENDOTHELIAL **ACTIVATION**
- 3. DEGRADATION OF BASEMENT **MEMBRANE**
- 4. **MIGRATION**
- 5. FORMATION OF MATURE NEW VESSEL

HYPOTHESIS

- Angiogenesis is tightly controlled by the balance of two sets of counteracting factors

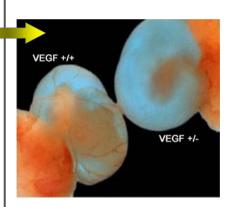
 angiogenic activators and inhibitors
- The stability of the 'angiogenic switch' determines the time of initiation of the subsequent angiogenic process

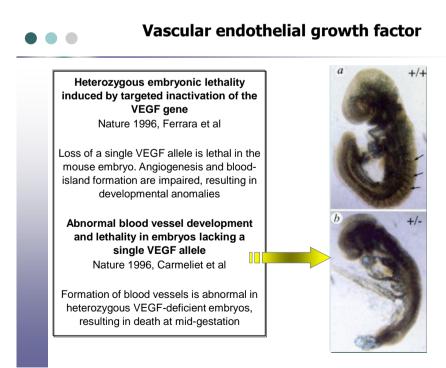

The angiogenic balance


Control of angiogenesis in the healthy body occurs through a series of switches:

Stimulating factors (ON switches) Inhibitors (OFF switches)

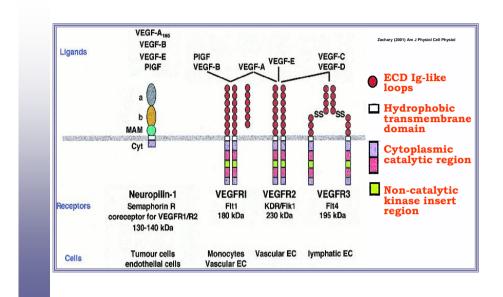
- When growth factors are in excess of inhibitors, the balance favours blood vessel growth
- When inhibitors are present in excess of stimulators, angiogenesis is stopped
- ✤ The normal, healthy body maintains a balance of angiogenesis modulators, and generally angiogenesis is OFF

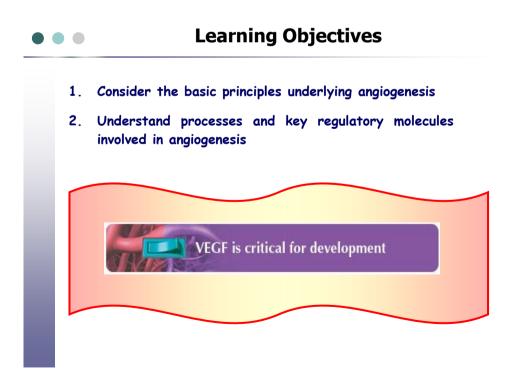

Vascular endothelial growth factor

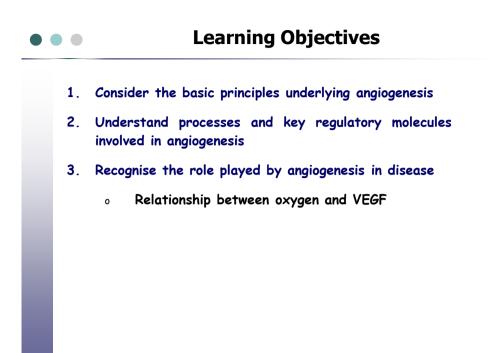

Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene Nature 1996, Ferrara et al

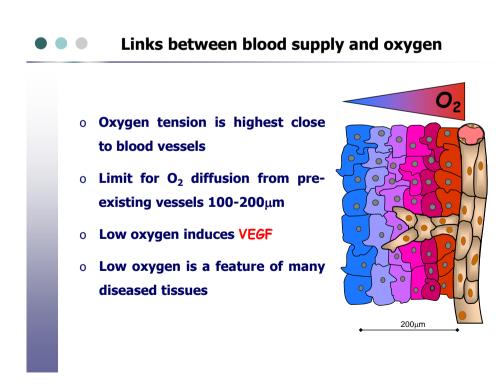
Loss of a single VEGF allele is lethal in the mouse embryo. Angiogenesis and bloodisland formation are impaired, resulting in developmental anomalies

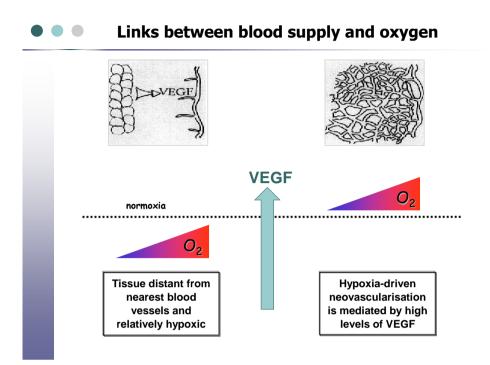
Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele Nature 1996, Carmeliet et al

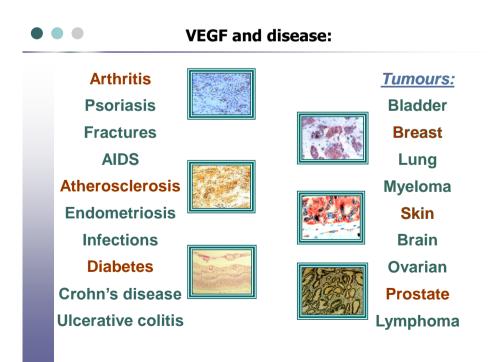

Formation of blood vessels is abnormal in heterozygous VEGF-deficient embryos, resulting in death at mid-gestation

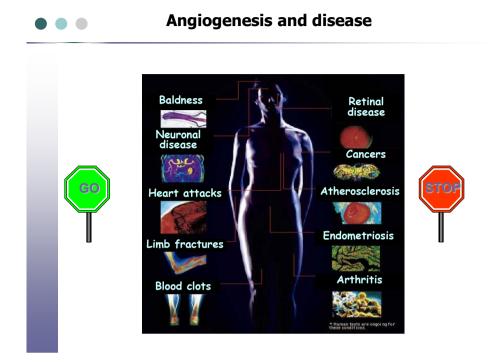







Vascular endothelial growth factor

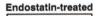




• Why is angiogenesis so important in cancer?

Growth

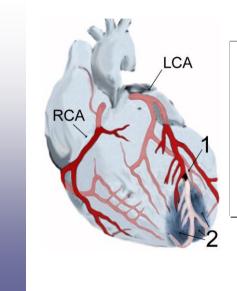
- Malignant tumour cells promote angiogenesis by sending signals, in the form of growth factors, to nearby blood vessels
- Because tumours produce large amounts of angiogenesis-activating factors, they overwhelm the natural inhibitors that keep blood vessel growth in check
- Sustained angiogenesis is the result


Why is angiogenesis so important in cancer?

Metastasis

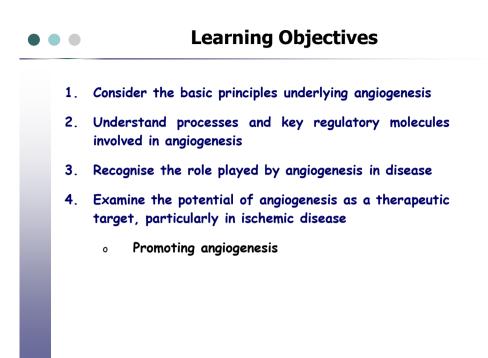
- Some of the most devastating and deadly effects of cancer arise from its ability to spread, or *metastasize*, from one location to many throughout the body
- In order to metastasize, tumour cells must be able to enter the circulation
- Angiogenesis not only feeds tumour growth but also connects tumours to the bloodstream, allowing tumour cells to travel to other parts of the body and invade tissues and organs

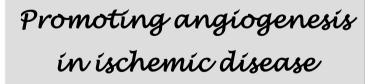
Treatment with angiogenesis inhibitor can suppress growth of tumors in mice


Saline-treated

------ Endostatin-treated ----

O'Reilly et al., Cell, 1997




- Occlusion (1) of a branch of the left coronary artery (LCA)
- Myocardial infarction of the tip of the anterior wall of the heart (2)
- The resulting ischemia or oxygen shortage causes damage and potential death of heart tissue

- 1. Consider the basic principles underlying angiogenesis
- 2. Understand processes and key regulatory molecules involved in angiogenesis
- 3. Recognise the role played by angiogenesis in disease

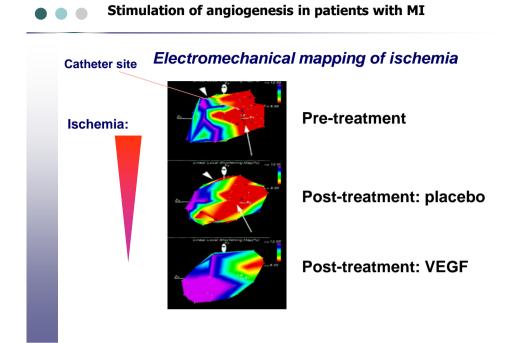
ANY DISEASE INVOLVING CHANGES TO BLOOD SUPPLY AND/OR TISSUE MASS IS "ANGIOGENESIS-DEPENDENT"

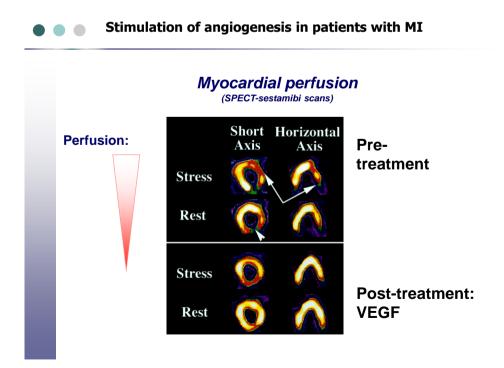
 In ischaemic diseases, supply of blood is impaired due to narrowed or blocked arteries, that starve tissues of nutrients & oxygen

- Coronary atherosclerosis-induced myocardial infarction is one of the leading causes of mortality in developed countries
- Ischaemic disease also affects the lower extremities

Angiogenesis & ischaemic diseases

- Considerable advances in both surgical bypassing and percutaneous revascularisation techniques have been reached
- Many patients cannot benefit from these therapies because of the extension of arterial occlusion and/or microcirculation impairment
- There is a compelling need for alternative therapeutic strategies

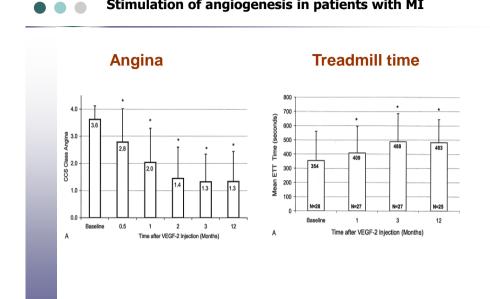

Randomised, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis in patients with chronic myocardial ischemia


Circulation 2001 May 1;103(17):2138-43

Vale, Losordo, Milliken, McDonald, Gravelin, Curry, Esakof, Maysky, Symes & Isner

Stimulation of angiogenesis in patients with MI

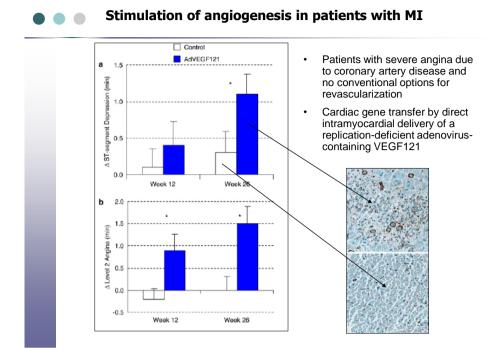
- Catheter advanced percutaneously to left ventricular myocardium of patients with chronic myocardial ischemia
- * Patients randomised to receive VEGF plasmid or placebo
- Patients initially randomised to placebo eligible for VEGF if no clinical improvement after 90 days
- VEGF-transfected patients experienced reduced angina and nitroglycerin consumption for up to 360 days when compared with controls


One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients

Am J Cardiol 2003 Aug 15;92(4):436-9

Fortuin, Vale, Losordo, Symes, DeLaria, Tyner, Schaer, March, Snell, Henry, Van Camp, Lopez, Richenbacher, Isner & Schatz

- Patients received naked plasmid DNA encoding VEGF-C
- Direct myocardial injection via thoracotomy
- Few major adverse events at 1 year
- Procedure associated with clinical improvement
- Reduced number of angina episodes and nitroglycerin consumption
- But no angiographic evidence of angiogenesis

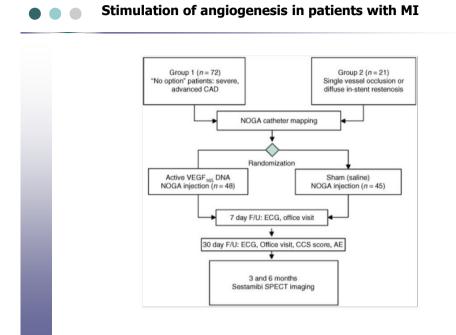

Stimulation of angiogenesis in patients with MI

Stimulation of angiogenesis in patients with MI

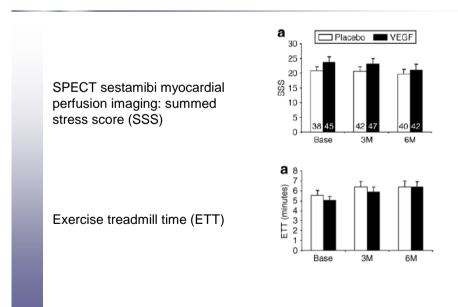
> Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF121 (AdVEGF121) versus maximum medical treatment

> > Gene Therapy (2006) 13, 1503-1511

Stewart, Hilton, Arnold, Gregoire, Rivard, Archer, Charbonneau, Cohen, Curtis, Buller, Mendelsohn, Dib, Page, Ducas, Plante, Sullivan, Macko, Rasmussen, Kessler and Rasmussen on behalf of the **REVASC** Investigators



Stimulation of angiogenesis in patients with MI


VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial

Mol Ther. 2009 Jun;17(6):1109-15

Stewart, Kutryk, Fitchett, Freeman, Camack, Su, Della Siega, Bilodeau, Burton, Proulx, Radhakrishnan; NORTHERN Trial Investigators

Stimulation of angiogenesis in patients with MI

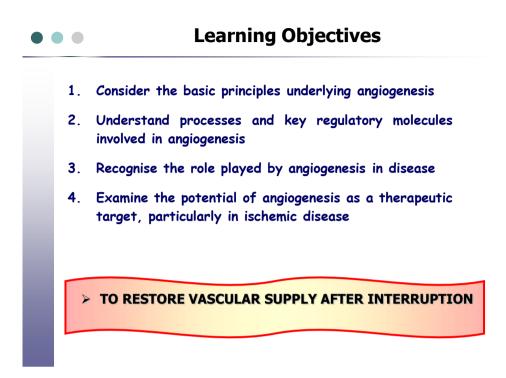
Angiogenesis & ischaemic diseases

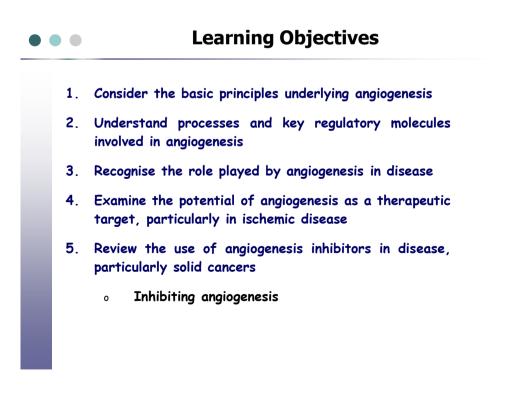
Therapeutic protein	Trial type	n	Route of administration	Results/effects compared with placebo*
VEGF-A 165	Phase II	178	IC and IV infusion	Safe. No improvement in ETT, angina, or SPECT compared with controls. High-dose VEGF at 120 days resulted in significant improvement in angina dass and non-significant trend in ETT and angina frequency
FGF-2	Phase I/II	24	Epicardial implantation of sustained release Heparin—alginate capsules	Significant improvement in angina frequency and reduction in ischemic area at 3 years
FGF-2	Phase II	337	IC infusion	Safe. No effect on ETT or SPECT; trend towards improvement in angina at 90 days, but not 180 days
GM-CSF	Phase I/II	21	IC injection followed by SC injection over 2 weeks	Significant improvements in collateral flow index and ECG signs of ischaemia

Zachary & Morgan (2011) Heart;97:181-189

Angiogenesis & ischaemic diseases

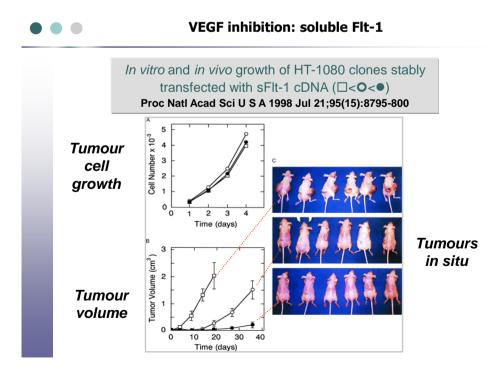
Trial	Disease	The rapeu tic fac tor	Route of administration	Control treatment	n	Primary end point	Results*
EUROINJECT- ONE	CAD (CCS III-IV)	Naked VEGF ₁₆₅ plasmid	Percutaneous intramyocardial injections	Control plasmid	74	Improved myocardial perfusion at 3 months	Negative
GENASIS	CAD (CCS III—IV)	Naked VEGF-2 (VEGF-C) plasmid	Percutaneous intramyocardial injections	Vehicle	295 (404 planned)	ETT at 3 months	Negative at interim analysis, stopped
NORTHERN	CAD (CCS III-IV)	Naked VEGF1es plasmid	Percutaneous intramyocardial injections	Vehicle	120 (planned)	Change in myocardial perfusion in stress/rest at 12 weeks	Negative
VIF-CAD	CAD (CCS III—IV)	Naked bicistronic VEGF-A165/FGF-2 plasmid	Percutaneous intramyocardial injections	Control plasmid	?	SPECT at 4 months	Ongoing
DELTA-1	PAD (claudication)	Plasmid-expressing Del-1 formulated with poloxamer 188	Intramuscular injections	Vehicle	157	PWT at 3 months	Negative
Groningen	PAD (CU)	Naked VEGF165 Plasmid	Intramuscular injections	Saline	54	Decrease in amputation rate	Negative (secondary end points positive)
HGF-STAT	PAD (CU)	Naked HGF plasmid	Intramuscular injections	Saline	104	Wound healing, amputatio rate, rest pain, ABI	Negative
TALISMAN 201	PAD (CU)	Naked FGF-1 plasmid	Intramuscular injections	Vehicle	125	Ulcer healing at 6 months	Negative (secondary end point of reduced amputation positive)
TAMARIS	PAD (CLI)	Naked FGF-1 plasmid		Vehicle	490 (planned)	Amputation or death	Ongoing

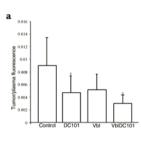

Zachary & Morgan (2011) Heart;97:181-189

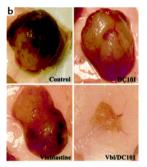

Angiogenesis & ischaemic diseases

Trial	Disease	Therapeutic factor	Route of administration	Control treatment	n	Primary end point	Re sults*
КАТ	CAD (CCS class II—III)	AdVEGF ₁₆₅ or plasmid/liposome VEGF ₁₆₅	Intracoronary injection at the angioplasty	Ringer's lactate	103	Improved myocardial perfusion, 6 months	Positive (AdVEGF group only)
REVASC	CAD (CCS II—IV)	AdVEGF ₁₂₁	Intramyocardial injection via mini-thoracotomy	Best medical care (no placebo)	67	Time to 1 mm ST-segment depression on ETT, 26 weeks	Positive
NOVA	CAD (CCS II—IV)	AdVEGF ₁₂₁	Percutaneous intramyocardial injections	Vehide	129 (planned)	ETT, 26 weeks	Stopped
AGENT-2	CAD (CCS II—IV)	AdFGF-4	Intracoronary injection	Vehicle	52	SPECT, 8 weeks	Positive
AGENT-3	CAD (CCS II-IV)	AdFGF-4	Intracoronary injection	Vehide	416	ETT, 12 weeks	Negative (positive for >55 years with CCS III-IV)
AGENT-4	CAD (CCS II—IV)	AdFGF-4	Intracoronary injection	Vehide	116	ETT, 12 weeks	Negative (significant beneficial effects on ET time to angina, and CC class in women)
AWARE	CAD (CCS III-IV)	AdFGF-4	Intracoronary injection	Vehide	300 (women)	ETT, 6 months	Ongoing
VEGF peripheral vascular disease trial	PAD (claudication)	AdVEGF165 or plasmid/liposome VEGF165	Intra-arterial injection at the angioplasty	Ringer's lactate	54	Increased vascularity i angiography 3 months	Positive (Ad and plasmid groups)
RAVE trial	PAD (claudication)	AdVEGF ₁₂₁	Intramuscular injections	Vehicle (no virus)	105	PWT, 12 weeks	Negative
WALK	PAD (claudication)	AdHIF-1/VP16	Intramuscular injections	Vehide	300	PWT, 6 months	Ongoing

Angiogenesis & ischaemic diseases

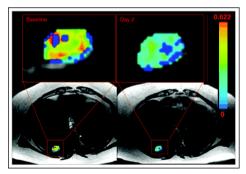

- \circ >2500 patients treated
- No large clinical trial has shown substantial benefit i.e. early promise yet to be translated to clinic
- No indications of long-term effect of VEGF on cardiovascular disease i.e. VEGF does not promote or accelerate atherosclerosis and its clinical consequences (e.g. plaque rupture)
- o No indications of any long-term effect on cancer
- Lack of effects due to shortcomings in existing approaches - progress in translation to clinic will follow advances in delivery, expression and biological efficacy?

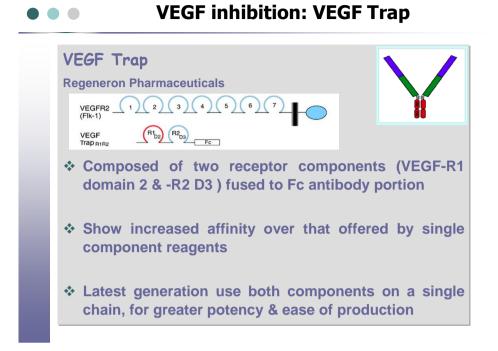

Angíogenesís as a therapeutíc target ín cancer

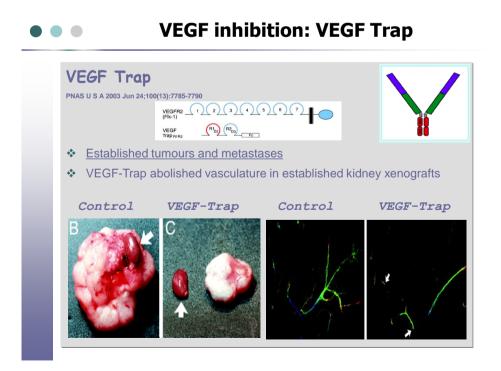


VEGF inhibition: anti-Flk-1

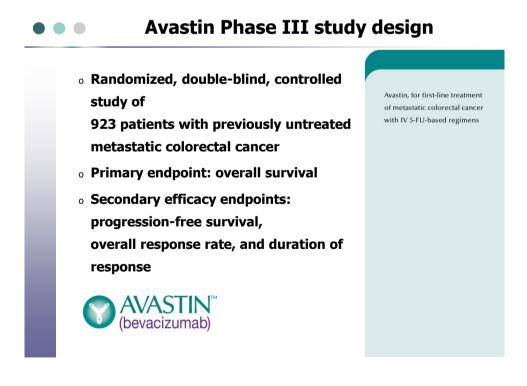
Established SK-N-AS neuroblastoma xenografts subjected to a 2week course of treatment with anti-Flk-1 (DC101) antibody, lowdose vinblastine, or combination. Tumour perfusion measured as intravascular FITC-dextran fluorescence. J Clin Invest 2000, 105(8):R15-24

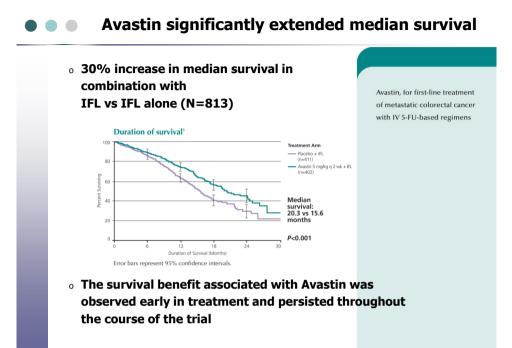





VEGF inhibition: Downstream signalling

 Small molecule inhibitors of downstream tyrosine kinase enzymes
 Broad specificities (VEGF-R, other growth factor receptors) J Clin Oncol (2005) 23 5464-5473




- AG-013736
- Oral TK inhibitor, phase I safety study
- Dynamic contrast-enhanced image
- Reduced perfusion in pulmonary metastasis in RCC patient

Anti-VEGF antibody in cancer THE FIRST ANTI-ANGIOGENIC **CLINICALLY PROVEN TO EXTEND SURVIVAL** Avastin, for first-line treatment of metastatic colorectal cancer with IV 5-FU-based regimens Indication ochemicalstainingofa a with the endothelial Avastin, used in combination with intravenous 5-fluorouracil (FU)-based chemotherapy, is indicated for first-line treatment of patients with metastatic carcinoma of the colon or rectum. AVASTIN[™] (bevacizumab) www.avastin.com Genentech

Survival benefit observed across all patient subgroups analyzed

Baseline Characteristics	Total N	Duration of Survival Median (mo)		
All subjects	813	15.6		
Age (years)				
Adults <40	35	15.6		
40-64	507	15.8		
≥65	271	14.92		
Sex				
Female	328	15.7		
Male	485	15.4		
Race				
White	645	15.319.6		
Others	168	17.5		

Avastin, for first-line treatment of metastatic colorectal cancer with IV 5-FU-based regimens

Survival benefit observed across all patient subgroups analyzed

Baseline Characteristics	Total N	Duration of Survival Median (mo)
No. of metastatic disease si	tes*	
1	306	17.9
>1	507	14.619.9
Duration of metastatic dise	ase	
<12 months	760	15.7
≥12 months	53	14.7

Avastin, for first-line treatment of metastatic colorectal cancer with IV 5-FU-based regimens

Anti-VEGF antibody in cancer

• Metastatic Colorectal Cancer

AVASTIN®, in combination with intravenous 5-fluorouracil-based chemotherapy, is indicated for first- or second-line treatment of patients with metastatic carcinoma of the colon or rectum

• Non-Small Cell Lung Cancer

AVASTIN®, in combination with carboplatin and paclitaxel, is indicated for first line treatment of patients with unresectable, locally advanced, recurrent or metastatic non-squamous, non-small cell lung cancer

Metastatic Breast Cancer

AVASTIN®, in combination with paclitaxel, is indicated for the treatment of patients who have not received chemotherapy for metastatic HER2-negative breast cancer

Anti-VEGF antibody in cancer

• Progressive Glioblastoma

Accelerated approval for patients with progressive glioblastoma following prior therapy

Genentech

• Metastatic Renal Cell Carcinoma

US Food and Drug Administration approved (August 2009) bevacizumab plus interferon alpha for with metastatic renal cell carcinoma, the most common form of kidney cancer, based on data from a Phase III study which showed that increased benefit for patients who received this combination compared to those on interferon alpha alone

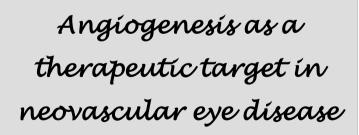
Anti-VEGF antibody in cancer

• Gastrointestinal (GI) perforation:

o Treatment with Avastin can result in the development of GI perforation. In clinical trials, these events occurred throughout the course of treatment and in some cases resulted in fatality

• Wound healing complication:

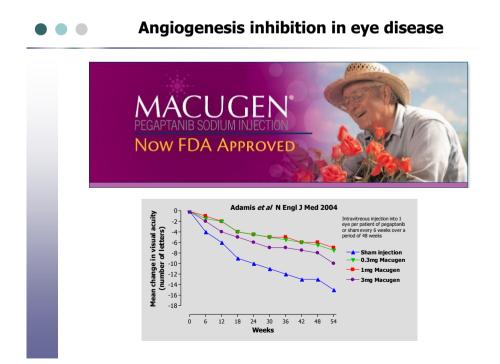
 Treatment with Avastin can lead to slow or incomplete wound healing (for example, when a surgical incision has trouble healing or staying closed). In some cases, this event resulted in fatality. The appropriate waiting time between stopping treatment with Avastin and having surgery has not been determined

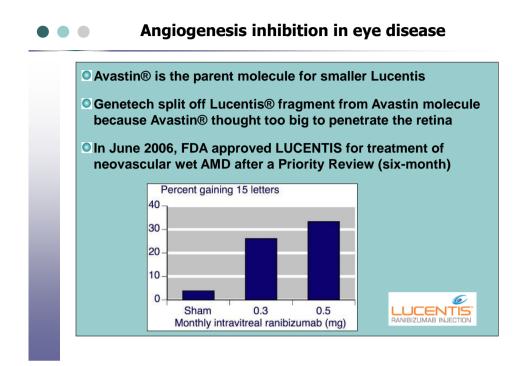

Hemorrhage:

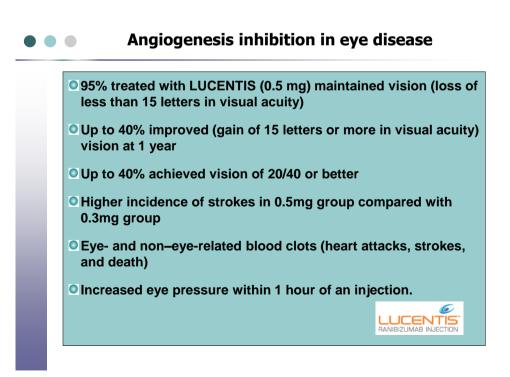
 Some people receiving Avastin with chemotherapy for lung cancer experienced hemoptysis (severe bleeding problem at the site of the tumour). In some cases, this event resulted in fatality

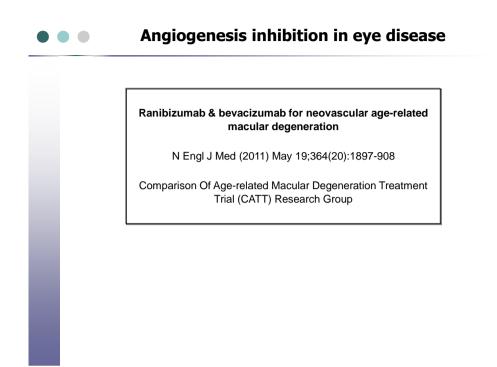
Anti-VEGF antibody in cancer

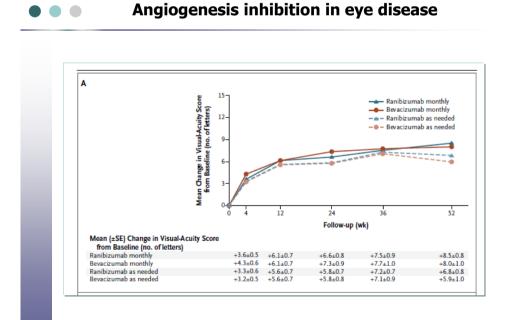
Add	litional serious side effects:
0	Strokes or heart problems (blood clots), hypertensive crisis (severe hypertension), & congestive heart failure.
O Mos	st common adverse events:
0	Weakness, pain, headache, hypertension, diarrhoea, nausea, vomiting, loss of appetite, mouth sores, constipation, upper respiratory infection, nosebleeds, skin irritation, and proteinuria
O Met	astatic breast cancer approval <u>withdrawn 2010/2011</u> :
0	Ineffective - thought to slow cancer by 6 months, but more recent studies show Avastin only slowed disease by 2-3 months
ο	Side-effects, including ulcers in stomach and intestines, as well as blood clots

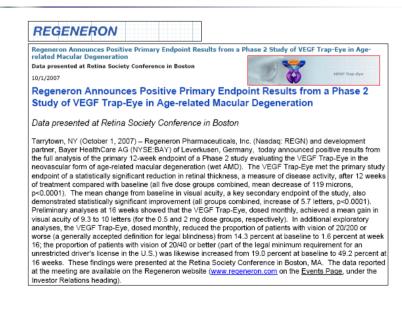


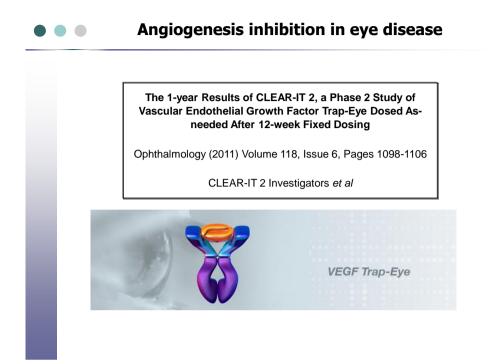

Angiogenesis inhibition in eye disease

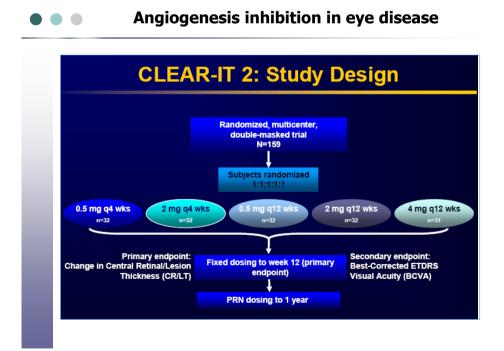

Age-related macular degeneration (AMD) is the most common cause of vision loss among people over the age of 60

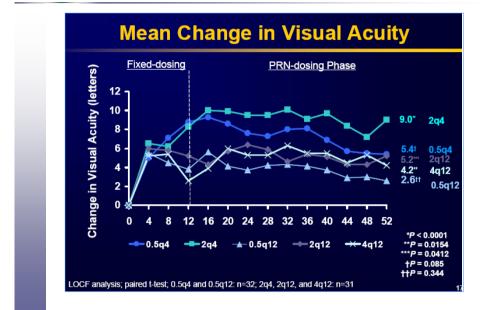

- o Impacts millions of older adults every year
- Affects central vision and can sometimes make it difficult to read, drive or perform other activities requiring fine, detailed vision
- o Abnormal choroidal blood vessel growth in the choriocapillaris
- Bleeding, leaking and scarring from vessels cause irreversible damage to photoreceptors and rapid vision loss if left untreated

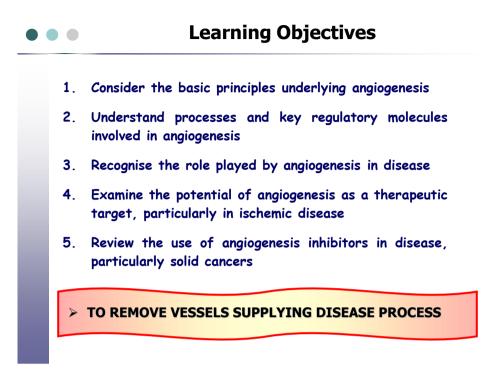



Angiogenesis inhibition in eye disease


KEY FINDINGS


- Based on 1208, primary outcome was mean change in visual acuity between baseline and 1 year: equivalent
- Bevacizumab monthly was equivalent to ranibizumab monthly, with 8.0 and 8.5 letters gained, respectively
- Rates of death, myocardial infarction and stroke were similar
- Proportion of patients with serious adverse events (primarily hospitalization) higher with bevacizumab than ranibizumab (24.1% vs 19%)
- A single dose of ranibizumab costs (\$1950) 40 times as much as a single dose of bevacizumab (\$50)


Angiogenesis inhibition in eye disease



Angiogenesis inhibition in eye disease

Angiogenesis inhibition in eye disease

- August 2011 VEGF Trap-Eye not approved by the FDA for the treatment wet AMD; decision delayed until 18.11.2011
- Fewer Injections into the Eye: every 2 months instead of monthly (Lucentis)
- Side effects of VEGF Trap-Eye in clinical trials generally mild
- The most frequent side effects were associated with injection procedure, the underlying disease, or aging process: conjunctival hemorrhage, eye pain, retinal haemorrhage, and vitreous floaters

Status of angiogenesis inhibitors

Bevacizumab (Avastin™)	Genentech/Hoffmann-La Roche Anti-VEGF monoclonal antibody	APPROVED: USED:	Colorectal, lung, renal, brain cancer AMD
Ranibizumab (Lucentis™)	Genentech/Hoffmann-La Roche Anti-VEGF monoclonal antibody	APPROVED:	AMD
Pegaptanib sodium (Macugen™)	Eyetech Pharm/Pfizer Anti-VEGF aptamer (synthetic nucleic acid ligand)	APPROVED:	AMD
VEGF Trap/Eylea (Aflibercept™)	<i>Regeneron</i> VEGF-R1 D2 & -R2 D3 fused to Fc	TRIALS: USED:	Colorectal, lung, prostate cancer AMD (approval awaited)
PTK787/Vatalanib	<i>Novartis</i> VEGF receptor tyrosine kinase inhibitor (R1, R2, R3)	TRIALS:	Colorectal cancer
Pazopanib (Votrient™)	GSK VEGF receptor tyrosine kinase inhibitor (R1, R2, R3)	APPROVED: TRIALS:	Renal cancer Lung, ovarian, bladder cancer
ZD6474/Vandetanib (Caprelsa™)	AstraZeneca VEGF receptor tyrosine kinase inhibitor	APPROVED: TRIALS:	Thyroid cancer Lung cancer