Myocyte function in hypertrophy and heart failure

- Sian Harding
- BSc Module 1
- 27/10/11

Natural history of heart failure

Heart failure

Definition ...syndrome... which arises when the heart is unable to maintain an appropriate blood pressure without support P.Harris, Br Heart J (1987) <u>58</u>:190-203

Evolutionary origin

The body response is an ancient evolutionary reflex similar to the response to exercise and haemorrhage P. Harris Cardiovasc. Res (1983) <u>17</u>

Lascaux cave painting – man attacked by bison. *MIchael Holford*

What happens to the remaining myocytes in the failing heart?

Isolation of myocytes from the ventricle of the heart

Experimental preparation: Isolated, superfused ventricular myocyte

Advantages

- Retains contractile function
- Can be obtained from small myocardial samples
- Viability can be established
- Absolute measure of contractility
- No endogenous modulators
- Hypoxia unlikely
- Extends range of useful methods
 - Electrophysiology
 - Calcium transient measurements
- Access to agents with poor diffusion
- Gene transfer

Transfection with Green Fluorescent protein using adenovirus

Ventricular myocytes from failing and non-failing human heart

Loss of response to increased stimulation frequency in ventricular myocytes from failing and non-failing human heart

Ken MacLeod

Depressed frequency response in myocytes from failing human ventricle

Slow relaxation is a common feature of myocytes from failing human heart

significantly different from NF, no difference between groups

Beat duration

Updated from Harding, JMCC 1992 24:549

Maximum response to isoprenaline in human left ventricular myocytes

P<0.01 vs IHD, MITRAL

Mechanisms to increase contractile force

Response to increased frequency

Stimulation of β-adrenoceptors By adrenaline/noradrenaline

Both lost in the failing heart

Cell loss

Sympathetic Drive (adrenaline/noradrenaline)

Increased peripheral resistance

Increase in heart rate and force

Stimulation of remaining heart function

Cell necrosis/apoptosis

Catecholamine depletion Beta-adrenoceptor desensitisation

Arrhythmias

Calcium movements in excitation-contraction coupling

Calcium movements in excitation-contraction coupling Changes in heart failure

SERCA and NCX Expression

SERCA2a protein levels correlate with frequency response

SERCA2a protein

Hasenfuss et al, Circ Res 1994, 75:434-442

Calcium movements in excitation-contraction coupling Effect of thapsigargin

Thapsigargin mimics effect of failure on frequency response

Thapsigargin

Increasing SERCA2a activity experimentally

- A replication-deficient adenovirus carrying both the SERCA2a cDNA and GFP under the control of separate CMV promoters and a structurally similar adenovirus carrying the reporter gene GFP were used
- Ventricular myocytes were isolated from the left ventricles of the human hearts
- Myocytes were infected with either Ad.GFP or Ad.SERCA2a

Adult myocytes after 48 h in culture with adenovirus with GFP

Overexpression of SERCA2a restores frequency response

Protein levels of the Na/Ca exchanger after adenoviral overexpression

Slowed relaxation in cells from failing heart

Myocyte size does not predict function

Slowing is related to hypertrophy, but not to increased cell size

DEL MONTE, F., O'GARA, P., POOLE-WILSON, P.A., YACOUB, M.H., and HARDING, S.E. (1995) Cell geometry and contractile abnormalities of myocytes from failing human left ventricle. Cardiovasc.Res. **30**, 281-290.

NAQVI, R.U., DEL MONTE, F., O'GARA, P., HARDING, S.E., and MACLEOD, K.T. (1994) Characteristics of myocytes isolated from the hearts of renovascular hypertensive guinea-pigs. Am.J.Physiol. 266, H1886-H1895 Human left ventricular myocytes

<u> C. Terracciano - NHLI -2001</u>

Recovery of contractile function of human left ventricular myocytes after 8 months on LVAD

Terracciano et al, Circulation 2004: Correlation between recovery and SR Ca stores

SERCA2a inhibition by thapsigargin abolishes the difference between relaxation in myocytes from failing and non-failing human hearts

time, s

Overexpression of SERCA2a speeds contraction and relaxation in human cells

Del Monte et al Circulation 1999

Effect of SERCA2a Gene Transfer on Survival in Rats with Pressure-Overload Hypertrophy in Transition to Heart Failure

SERCA2a as a possible gene therapy target

- Either SERCA2a overexpression or depletion of phospholamban are effective in increasing contraction and speeding relaxation in mouse/rat/rabbit/human myocytes
- No increase in mortality in PLB-KO or rats overexpressing SERCA2a
- No evidence for induction of arrhythmia: suppression of βadrenoceptor-mediated aftercontractions.
- Rescue of some, but not all, mouse heart failure models by PLB-KO cross
- Rescue of heart failure in rat/hamster/pig by gene transfer by PLB-KO

CUPID: Time to Multiple Clinical Events As of May 21, 2010

Prolonged action potential is a hallmark of the failing myocyte

(Beuckelmann et.al. Circulation Research 73:379, 1993)

Ca and K currents in human ventricular myocytes

- I_{CA-L} unchanged (Beuckelmann 1992, Mewes 1994)
- I_{KS/R} small or absent (Beuckelmann 1993)
- I_{K1} decreased in HF (Beuckelmann 1993)
- I_{TO} epi>endo, gradient decreased in HF (Nabauer 1996)
- I_f unchanged (Hoppe, 1998)
 - NB NaK ATPase decreased reduced hyperpolarisation and raised intracellular Na

1 s

β-adrenoceptor desensitisation in ventricular myocytes from failing human heart

Updated from Harding, JMCC 1992 24:549

β -adrenoceptor control of calcium handling

In failing human myocardium:-

- SERCA2a activity is reduced more consistently than protein levels
- Cyclic AMP levels (basal or beta-adrenoceptorstimulated) are reduced
- Back-phosphorylation experiments have shown reduced phospholamban phosphorylation
- Therefore, increased inhibitory effects of phospholamban may contribute to low SERCA2a activity

Down-regulation of phospholamban in rabbit myocytes 48 h after infection with Ad.Plb.As

Effect of SERCA2a overexpression or PLB down-regulation on Contraction Amplitude vs frequency-response

Acceleration of relaxation time following stimulation of SERCA2a activity

* sig diff from Con# sig diff from Basal

Human ventricular myocytes after down-regulation of phospholamban using PLB-antisense adenovirus

The cardiac SR Ca²⁺-release channel in heart failure

Marks et al Circulation 2002 105:272

Development of heart failure, role of sympathetic drive

Cell loss

Sympathetic Drive (adrenaline/noradrenaline)

Increased peripheral resistance

Increase in heart rate and force

Stimulation of remaining heart function

Catecholamine depletion Beta-adrenoceptor desensitisation Cell necrosis/apoptosis

Arrhythmias

Re-entrant arrhythmias

Direction of depolarisation

Normal myocardium **Functional block**

Failed trials with positive inotropes in heart failure

TrialResultsPROMISE, milrinone 1991Increased mortality, 28%Xamoterol 19903-fold increase in mortalityPROFILE, flosequinan 19942-fold increase in mortalityVesnarinone, 1993Increased mortality

Improvement of heart failure by long-term β -blocker treatment

Left ventricular end diastolic pressure, mmHg

Heart rate, bpm

Systolic blood pressure, mmHg

Metoprolol, 2 months

Waagstein Circulation 1989

β-blocker trials

TRIAL	No. Pte	β- BLOCKER	Patients	RES All cause mortality	ULTS Clininal Outcomes
MDC	383	Metoprolo	NYHA II - III LVEF ≤ 40%	N.S.	Substantia↓ in no. of patients requiring cardiac transplant (NS)
CIBIS I	641	Bisoprolol	NYHA III-IV LVEF ≤ 40%	N.S.	↑ Functional status and hospitalisation (p 0.01)
CIBIS II	2647	Bisoprolol	NYHA III-IV LVEF≤ 35%	↓ 32% ↓ 45% sudder death	Not yet analysed
US	1094	Carvedilol	NYHA II-IV LVEF≤35%	↓ 38% for combined death + admission	↓ 27% risk of hospitalisation fo CVS disease
ANZ	415	Carvedilol	NYHA II-III LVEF≤ 45%	↓ 26% for combined death + admission	↑LVEF (p<0.0001) ↓LV cavity size (p<0.001)
Merit- HF	3991	Metoprolol	NYHA II-IV LVEF≤40%	↓ 35%	LVEF up 28% LV mass down
COPERNICUS	2289	Carvedilol	NYHA IV LVEF≤25%	↓35%	Not yet analysed

ACEI/AngII blockers Aldosterone blockers Diuretics Beta-blockers Hypertrophy Dilatation Volume loading Sympathetic stimulation

Apparent recovery/ compensation **Decompensation**/ Heart failure

Damage

Death

Alterations common to heart failure of various aetiologies

- Beta-adrenoceptor desensitisation
- SERCA2a activity decreased
- NaCa Exchanger increased
- RyR leaky
- Ito decreased
- Iks/r decreased
- NaK ATPase decreased
- Action potential duration increased