Dilated Cardiomyopathy

Ralph Knöll Professor & Chair

Lecture 2

Cardiomyopathy

- Definition 1: Cardiomyopathy is a **primary** weakening of the heart muscle or a change in heart muscle structure. It is often associated with inadequate heart pumping or other heart function problems.
- Please note: cardiomyopathy is never the result of a disease of the pericardium, of hypertonus, a disease of the coronaries, or a consequence of valve diseases.

Cardiomyopathy

 Definition 2: Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually (but not invariably) exhibit inappropriate ventricular hypertrophy or dilatation and are due to a variety of causes that frequently are genetic. Cardiomyopathies either are confined to the heart or are part of generalized systemic disorders, often leading to cardiovascular death or progressive heart failure-related disability (Maron et al., Circulation 2008).

Most important Cardiomyopathies

- Dilated Cardiomyopathy (DCM)
- Hypertrophic Cardiomyopathy (HCM / HOCM)
- Restrictive Cardiomyopathy (RCM)
- Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC/D)

(Braunwald, 2005)

Dilated Cardiomyopathy

 Definition: Dilated cardiomyopathy is a condition in which the heart becomes weakened and enlarged. It cannot pump blood efficiently. Many different medical problems can cause this type of cardiomyopathy.

Cardiomyopathy

 Genetic defects have been shown in many types of cardiomyopathies (but not all).

Dilated Cardiomyopathy (DCM)

- DCM is characterized by ventricular chamber enlargement and systolic dysfunction with normal LV wall thickness, leading to progressive heart failure and a decline in LV contractile function, ventricular and supraventriular arrhythmias, conduction system abnormalities, thromboembolism, and sudden or heart failure related death.
- Estimated prevalence of 1:2500, most frequent cause of heart transplantation

(AHA 2006, Maron et al., Circulation)

Dilated Cardiomyopathy -Complications

- Pump failure
- Arrhythmias
- Thromboembolias

Dilated Cardiomyopathy dysfunction

Dilated Cardiomyopathy

 Pathology: Histology and ultrastructure not characteristic, but: Hypertrophied cardiomyocytes, degenerated cardiomyocytes, interstitial fibrosis

Histology

Copyright © 2005 by Elsevier Inc.

C C Copyright © 2005 by Elsevier Inc.

Normal Heart

DCM Heart

Dilated cardiomyopathy, showing hypertrophy and degeneration of myocytes (dark red) without disarray. There is an increase in interstitial fibrosis (pale pink). Stains: hematoxylin and eosin (From Seidman JG, Seidman C: The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell 104:557, 2001.).

Dilated Cardiomyopathy (DCM)

- Frequent Cardiomyopathy (after HCM most frequent)
- Prevalence: up to 40/100 000
- Onset of disease between 20-50 years (or even later in life)
- Variable Penetrance
- Symptoms of progressive Heart Failure and Arrhythmias

Nail clubbing, Drumstick fingers (Hippocratic fingers) Associated with a number of diseases – mostly of the heart and lungs

Gross pathology

Dilated Cardiomyopathy (DCM)

B Copyright © 2005 by Elsevier Inc.

Normal Heart

C Copyright © 2005 by Elsevier Inc.

DCM Heart

DCM – secondary changes (globular geometry)

Gross pathology of dilated cardiomyopathy. Prominent ventricular dilatation is apparent in this heart, which has been opened so that the interior of the left ventricle can be seen. Wall thickness is **normal**, but the shape of the heart has become more globular. (From Kasper EK, Hruban RH, Baughman KL: Idiopathic dilated cardiomyopathy. In Abelmann WH, Braunwald E [eds.]. Atlas of Heart Diseases. Vol 2. Cardiomyopathies, Myocarditis, and Pericardial Disease. Philadelphia, Current Medicine, 1995, pp 3.1–3.18.)

Copyright © 2005 by Elsevier Inc.

TABLE 20–2 Definitions of Terms Used to Describe Systolic and Diastolic Function				
Term	Definition			
Preload	Distending force of the ventricular wall, which is highest at end-diastole and is responsible for sarcomere length at the beginning of systolic contraction			
Afterload	Resisting force of the ventricular wall during systolic ejection, which is necessary to overcome periphe vascular resistance or impedance; measures of afterload are peak-systolic, mean-systolic, or end-systo wall stress			
Contractility	Intrinsic ability of the myocardium to generate force at a certain rate and time (controlled for loading conditions)			
Cardiac output	Stroke volume multiplied by heart rate			
Stroke work	Mean systolic blood pressure multiplied by stroke volume			
Stroke force	Stroke work per ejection time			
Stress	Force per area			
Wall stress	Pressure multiplied by radius, divided by wall thickness $\times 2$			
Compliance or distensibilit	Change in volume per change in pressure (dV/dP)			
Elastance	Slope of the end-systolic pressure-volume relation			
Elasticity	Property of a material to restore its initial length or geometry after distending force has been removed			
Strain	Length change in percent of initial length; two definitions are used: LaGrangian strain e = (l – l _o)l _o and natural strain e = ln(l/lo)			
Stiffness	Pressure per volume change (dP/dV). Ventricular stiffness is a measure for changes of the ventricle as whole; myocardial stiffness is a measure for changes of the myocardium itself. Ventricular propertie characterized by instantaneous pressure-volume relations, whereas myocardial properties are best described by stress-strain relations.			
Creep	Time-dependent lengthening of a material in the presence of a constant force			
Stress relaxation	Time-dependent decrease of stress in the presence of a constant length			
Viscoelasticity	Resistance of a material to length changes (strain) or the velocity of length changes (strain rate)			

Physiology

Types of heart failure

Systolic and Diastolic Heart Failure

Ejektionfraction (EF) = **SV/EDV** oder **EDV-ESV/EDV** Hier: EF = 140 – 56 / 140 = 84 / 140 = 0,6 or 60%

(SV = Stroke Volume, EDV = enddiastolic Volume, ESV = endsystolic Volume)

Large enddiastolic volumes (chronic enlarged heart) do cause difficult working conditions - WHY?

• Law of Laplace (Walltension):

T = pr / 2d

- p = pressure
- r = radius
- d = Wall thickness of ventricle
- T = Walltension

Larger diameters (as indicated by large radius) cause increased walltension and as such cause stress to the myocardium (increase of oxygen demand)

As such it has been hypothesized that hypertrophy is the response of the myocardium to increased walltension (i. e. thicker ventricular walls normalize walltension).

The concept of wall tension

Circumferential (σc), meridional (σm) , and radial (σr) components of left ventricular wall stress from an ellipsoid model. The three components of wall stress are mutually perpendicular. (From Fifer MA, Grossman W. Measurement of ventricular volumes, ejection fraction, mass, and wall stress. In Grossman W [ed]: Cardiac Catheterization and Angiography. 5th ed. Philadelphia, Lea & Febiger, 1996, p 34.)

Copyright © 2005 by Elsevier Inc.

Wall tension – progression of disease

	Normal	Acute load	Compensatory hypertrophy	Cardiac failure
		h	h	
LV systolic pressure	N	+	+	+
LV radius	N	+	+	+
LV wall thickness	N	N	+	+
LV diastolic volume	N	+	±	++
Systolic wall stress	N	+	N	+
		19 mil		- 197

A REAL PROPERTY AND A REAL

Wall tension – progression of disease

- But how is wall tension translated into myocardial hypertrophy?
- Mechanosensation: the ultimate process of "sensing" and "translating" of a mechanical stimulus into a biochemical signal.
- Mechanosensation and mechanotransduction involve a variety of different molecules and intracellular systems such as integrins, the Z-disk and titin kinase.

Secondary Cardiomyopathies

Infiltrative* Amyloidosis (primary, familial autosomal dominant+, senile, secondary forms) Gaucher disease† Hurler's disease† Hunter's disease+ Storage‡ Hemochromatosis Fabry's disease† Glycogen storage disease† (type II, Pompe) Niemann-Pick disease† Toxicity Drugs, heavy metals, chemical agents Endomyocardial Endomyocardial fibrosis Hypereosinophilic syndrome (Löeffler's endocarditis) Inflammatory (granulomatous) Sarcoidosis Endocrine Diabetes mellitus† Hyperthyroidism Hypothyroidism Hyperparathyroidism Pheochromocytoma Acromegaly Cardiofacial Noonan syndrome† Lentiginosis† Neuromuscular/neurological Friedreich's ataxia† Duchenne-Becker muscular dystrophy+ Emery-Dreifuss muscular dystrophy† Myotonic dystrophy† Neurofibromatosis† Tuberous sclerosis† Nutritional deficiencies Beriberi (thiamine), pallagra, scurvy, selenium, carnitine, kwashiorkor Autoimmune/collagen Systemic lupus erythematosis Dermatomyositis Rheumatoid arthritis Scleroderma Polyarteritis nodosa Electrolyte imbalance Consequence of cancer therapy Anthracyclines: doxorubicin (adriamycin), daunorubicin Cyclophosphamide Radiation

*Accumulation of abnormal substances between myocytes (ie, extracellular). †Genetic (familial) origin. ‡Accumulation of abnormal substances within myocytes (ie, intracellular). Characteristics of DCM Genes

- Variable penetrance
- Age dependent onset of disease (midlife, 3., 4. decade of life or even later)
- Disease genes have only been detected in about 10 -20 % of familial cases: it is expected that more disease genes will be identified
- Monogenic disease versus polygenic disease

Electromechanical coupling

Sarcoplasmic Reticulum ATPase (SERCA)

Phospholamban mutations in DCM

 Phospholamban mutations in DCM patients have been shown to be "constitutive" active (i. e. they inhibit SERCA function)

The Z-disc / half sarcomere

- Member of cysteine-rich protein (CRP) family
- Two zinc-binding LIM domains, followed by conserved glycine-rich repeats
- MLP mutations cause cardiomyopathy and associated heart failure in animal models as well as in patients (Arber et al., Cell 1997; Knöll et al., Cell 2002)
- Nucleocytoplasmic shuttling MLP is required for adaptation to hypertrophic stimuli (Boateng et al., JMCC 2009)
- Underlying molecular mechanisms are not well understood
Mutations in Z-disc associated proteins

First human Z-disc – cardiomyopathy associated mutations: W4R-MLP & R87Q Telethonin (T-cap)

Α

(Knöll et al., Cell 2002)

Generation of W4R-MLP knock in animals

	WT Mean Value (n=18)	Heterozygous Mean Value (n=18)	Homozygous Mean Value (n=20)
SW (mm)	0.96±0.14	1.17±0.28††	1.11±0.18†
PW (mm)	0.88±0.11	0.97 ± 0.19	1.03±0.24†
EDD (mm)	4.42 ± 0.47	4.08 ± 0.74	4.18 ± 0.96
ESD (mm)	3.05 ± 0.66	2.49±0.84†	2.65 ± 1.19
h/r	0.43 ± 0.08	0.55±0.19†	0.55±0.19††
FS (%)	31.7±9.3	40.4±10.8†	39.0±13.0†
HR (bpm)	521 ± 82	569 ± 82	547 ± 69
Calc.LVM (mg)	181±33	188±48	196 ± 66
BW (mg)	39.0±6.0	41.7±9.3	34.8±5.7†**
LVM/BW (mg)	4.65 ± 0.59	4.56 ± 0.83	5.71 ±2.07†*

MLP mRNA:

MLP protein:

Skeletal Muscle Phenotype

Cell Stretch Experiments

Localization of MLP and W4R-MLP

W4R-MLP

- W4R-MLP is present in different caucasian populations (up to 1%) and as such only comparable to a MYBPC disease causing mutation present in southeast asia at a frequency of about 4% (Dhandapany Nat Gen 2009)
- W4R-MLP causes a cardiomyopathy and heart failure phenotype as well as a mild skeletal muscle phenotype
- Because of it's high frequency, W4R-MLP is an important human disease gene

MLP Mutations: Localization and Phenotype

Z-disc and cardiomyopathy

Kimura J human Gen 2010

Z-disc protein mutations

- May cause cardiomyopathy by affecting cardiac mechanosensation
- May also cause cardiomyopathy by changing interactions with other Z-disc components (i. e. an increase in affinity to interacting partners may lead to an increased stiffness of the Z-disc and hence an increase in calcium sensitivity or vice versa)

(Herrmann et al, 2007)

(Aebi et al, 2007)

Nuclear Membrane Proteins

- Lamin A/C (LMNA) and Emerin (EMD)
- Disease causing mechanisms remain unclear, but:
- 1. defects in stretch response
- 2. H222P-LMNA mutation might activate the MAPKinase pathway - suggesting changes in signal transduction cascades are involved in the pathogenesis of DCM

Model of how abnormalities of A-type lamins in the nuclear lamina may lead to cardiomyopathy.

Abnormalities of A-type lamins in the nuclear lamina activate MAPK cascades, possibly via heterotrimeric Gprotein receptors or by inducing stress responses by unknown mechanisms (?). This leads to activation of Gproteins (RAS and RAC), protein kinase (RAF), and subsequent enhanced phosphorylation of ERK and JNK1/2, resulting in nuclear translocation. In the nucleus, pERK1/2 and pJNK activate transcription factors such as Elk1, bcl-2, JunD, c-Jun, and Elk4, leading to increased synthesis of these proteins. Increased amounts and activities of transcription factors activated by pJNK and pERK1/2 alter expression of other genes, some encoding components of muscle fibers and sarcomeres. Aberrant expression of these proteins leads to development of cardiomyopathy.

Muchir et al., JCI 2007

Postional cloning of the lost contact gene (loc/Y319X-ILK)

(Knöll...Bakkers, Circulation 2007)

Similarities between *loc* zebrafish & lama4 -/- mouse model

loc (ilk -/-) zebrafish:

lama4 -/- mouse:

(Knöll et al., Circulation 2007)

Human ILK and LAMA 4 mutations

1816 aa

aa258

0

Sequence comparison of different lama 4 proteins in the area of P943

aa939	F	L	Т	v	P	S	L	S	s	homo sapiens
aa941	F	L	Т	v	Р	S	L	S	S	mus musculus
aa929	F	L	Т	v	P	S	L	S	S	canis familiaris
aa1064	F	L	Т	Ι	Р	S	L	S	S	gallus gallus
Sequence	compar	ison of	differe	nt lama	4 prot	teinsin	thear	ea of R.	1703	
aa 10 <i>6</i> 9	D	I	Е	v	R	Т	Р	А	D	homo sapiens
aa 1071	D	Ι	E	I	R	Т	Р	Α	D	mus musculus
aa 1059	D	Ι	E	v	R	Т	Р	Α	D	canis familiaris
aa 1194	D	Ι	Ε	v	R	Т	Р	s	D	gallus gallus
Sequence	compar	ison of	differ e	nt ILK	protei	nsin tl	ie ar ea	of A262	2	
aa258	Q	s	Р	Р	A	Р	н	Р	Т	homo sapiens
aa258	Q	S	Р	Р	A	Р	н	Р	Т	mus musculus
22258	0	S	P	P	A	P	H	P	Т	gallus gallus

danio rerio

т

Laminin α 4

ILK & LAMA4 mutations affect endothelial cells

(Knöll et al., Circulation 2007)

Mutations in sarcomeric components & possible transition to DCM

Copyright ©

(Maron BJ, Spirito P;. Am J Cardiol 81:1339-1344, 1998)

DCM & Muscular Dystrophy

• Some, but not all, cardiomyopathies are associated with muscular dystrophy.

Dystrophin is a structural part of cardiac and skeletal muscle tissues α -D: α Dystroglycan, DAGC: Dystrophin associated Glycoprotein Complex

(Buddecke, Molekulare Medizin)

Molekulare Basis der unterschiedlichen Verlaufsformen der progressiven Muskeldystrophie

Mutations as a possible cause of DCM

Cardion	Cardiomyonathy				
Genomic Defect	Hypertrophic	Dilated	Restrictive		
Sarcomere					
Myosin heavy chain	М	M			
Myosin essential light chain	М				
Myosin regulatory light chain	М				
Cardiac actin	М	M			
Troponin T	M/D	D			
Troponin I	М		М		
Alpha-tropomyosin	М	M			
Myosin-binding protein C	M/D	14241			
Titin/titin-related Protein Titin Telethonin (T-cap)	М	M/D M			
Z-disk-associated Proteins Muscle LIM domain protein	1	М			
Sarcolemma Cytoskeleton Dystrophin Beta-sarcoglycan Delta-sarcoglycan Alpha-dystrobrevin Metavinculin		D D/Dup M M D			
Intermediate Filaments Desmin Lamin A/C		M M			

D = deletion; Dup = duplication; M = missense.

Adapted from Chien KR: Genotype, phenotype: Upstairs, downstairs in the family of cardiomyopathies. J Clin Invest 111:175, 2003.

Copyright © 2005 by Elsevier Inc.

Summary

Location	Mechanism
Extracellular matrix	Different cell types, particularly endothelial cells, are affected
Costamer / Integrin interacting signaling molecules	Depending on expression pattern, mutations affect different cell types, including (& primarily) endothelial cells Mutations affect survival pathways
Cell membrane / Cytoskeletal (Dystrophin)	Force transduction
Z-disc /Z-disc associated proteins	Mechanosensation & Mechanotransduction, possibly affecting calcium sensitivity
Intermediate Filaments (cytosolic)	Mechanotransduction & Apoptosis
Nucleus, Nuclear membrane	Mechanotransduction & Apoptosis (direct chromatin interaction may directly affect gene expression)
Calcium metabolism	Phospholamban mutations
Sarcomer	Depending on type of mutation probably hypertrophic cardiomyopathy degenerating into dilated cardiomyopathy (indirect DCM pathway) Mutations affect as well directly contractility and calcium sensitivity (direct DCM pathway)
Mitochondrial	Defect in generation of energy
Calcium Sensitivity	Decreased calcium sensitivity and or "unresponsiveness to phosphorylation"

Known DCM-Genes

Nature Reviews | Genetics

Liew et al., Nat Rev Gen 2004

Known DCM-Genes

Disease Gene	Symbol	Chromosomal Locus	Comments	
Dystrophin β-Sarkoglykan δ-Sarkoglykan α-Dystrobrevin Laminin α	DMD SGCB SGCD DTNA LAMA4	Xp21 4q11 5q33–34 18q12.1–q12.2 6q21	Myopathy, X-linked Myopathy Myopathy Also leftventricular "non compaction"	
Desmin Titin Muscle LIM Protein Kardiales Aktin Cypher/ZASP Tinin-cap/Teletonin Integrin Linked Kinase Nebulette Calsarcin-1/Myozenin-2	DES TTN MLP/CSRP3 ACTC LDB3 TCAP ILK NEBL MYOZ2	2q35 2q31 11p15.1 15q14 10q23.2 17q12 11p15.4-p15.5 10p12 4q26	Myopathy Also LV-"non compaction"	
Kardiales Troponin T Kardiales Troponin C Kardiales Troponin I β-Myosin-Schwerkette α-Tropomyosin	TNNT2 TNNC1 TNNI3 MYH7 TPM1	1q32 3q21.1 19q13.42 14q11.2–13 15q22		
Lamin A/C EYA4	LMNA EYA4	1q1–q21 6q23–q24	Conduction defect, Myopathy Myopathy, Deafness	
Desmoplakin Metavinculin	DSP MVCL	6p23–p24 10q22–q23	"Wololy hair", Keratodermatose Mitrall valve prolapse	
Natriumkanal Typ V ATP-sensitiver Kaliumkanal Phospholamban	SCN5A ABCC9/SUR2A PLN	3q22.2 12p12.1 6q12-q16	Conduction defect	
G4.5/Tafazzin Mitochondriale DNA	TAZ	Xq28 mtDNA	Barth-Syndrome, X-linked, congenital DCM, LV "non compaction"	
Inheritance	phenotype	locus	gene	protein
----------------------	---------------------------------	-------------	-------	-------------------------
Autosomal dominant	pure DCM	9q12-q13	?	
	pure DCM	1q32	?	
	pure DCM	2q24.3-q31	TTN	titin
	pure DCM	6q12-q16	?	
	pure DCM	2q35	DES	desmin
	pure DCM	5q33	SGCD	δ-sarcoglycan
	pure DCM	15q11– qter	ACTC	actin
	pure DCM, early onset	14q11.2	MYH7	β-myosin heavy chain
	pure DCM, early onset	1q32	TNNT2	cardiac troponin T
Autosomal dominant +	DCM + CD	1q21	LMNA	lamin A/C
	DCM + CD	2q14-q22	?	
	DCM + CD + SND	3p22-p25	5	
	DCM + MVP	10q21-q23	?	
	DCM + hearing loss	6q23-q24	EYA4	eyes absent 4
	DCM + CD + LGMD	6q22-q23	?	
	DCM + CD + MD (AD-EDMD)	1q21	LMNA	lamin A/C
	DCM + CD + LGMD (LGMD1B)	1q21	LMNA	lamin A/C
Autosomal recessive	LGMD +/- cardiomyopathy	17q21	SGCA	α-sarcoglycan
	LGMD + severe cardiomyopathy	4q12	SGCB	β-sarcoglycan
	LGMD + cardiomyopathy (Brazil)	5q33	SGCD	δ-sarcoglycan
X-linked	Pure DCM	Xp21.3	DYS	dystrophin
	DCM lethal in infancy	Xq28	TAZ	tafazzin
	DCM + myopathy (Barth-Syndrome)	Xq28	TAZ	tafazzin
	DCM + CD + MD (XL-EDMD)	Xq28	EMD	emerin

Abbreviations: DCM, dilated cardiomyopathy; CD, conduction defect; SND, sinus node dysfunction; MVP, mitral valve prolapse; LGMD, limb girdle muscular dystrophy; MD, muscular dystrophy; EDMD, Emery-Dreifuss muscular dystrophy; AD, autosomal dominant; XL, X-linked.

Left ventricular non-compaction

- Left ventricular non-compaction cardiomyopathy is a heart muscle condition in which the muscular wall of the main pumping chamber of the heart (the left ventricle) appears to be spongy and "non-compacted", consisting of a meshwork of numerous muscle bands (trabeculations).
- This type of cardiomyopathy has not been fully understood so far and remains unclassified by the World Health Organisation, although it is thought to have some individual features. Its cause, development, clinical course and treatment are fields of ongoing research (the Cardiomyopathy Association).

β -receptor mutations, polymorphisms and antibodies against the β -receptor

Copyright © 2005 by Elsevier Inc.

Additional Causes: Myocarditis

- Viral myocarditis another possible cause of DCM: Adenovirus, Picorna Viru, Coxsackie Virus
- Diagnosis based on the analysis of endomyocardial biopsies (Histology, Detection of viralen DNA and RNA via PCR and/or in situ Hybridisation) in addition to antibody titers, markers of inflammation
- Between 15% and 70% of all DCM cases are probably due to myocarditis

Autoimmune Disease – another cause of DCM

- Defects in cellbased as well as in humoral immunity have been found in DCM
- Theory: viral proteins will be integrated into the cardiomyocyte cellmembrane, finally leading to the induction of auto-antibodies.
- Anti β myosin heavy chain, anti β receptor, anti mitochondrial protein antibodies have been found in patients affected by DCM
- Immunadsorption (i. e. Removal of antibodies) has been shown to improve myocardial function in DCM patients.

Additional causes – toxins, drugs

- Anthracyclines, particularly Doxorubicin (Chemotherapy)
- Alcohol toxic cardiomyopathy
- Cocain
- HIV Infection und consecutive DCM

Prognosis

TABLE 59–3 Factors Associated with an Advers	9–3 Factors Associated with an Adverse Outcome in Dilated Cardiomyopathy				
Clinical	Noninvasive	Invasive			
NYHA Class III/IV	Low LV ejection fraction	High LV filling pressures			
Increasing age	Marked LV dilation				
Low exercise peak oxygen consumption	Low LV mass				
Marked intraventricular conduction delay	≥Moderate mitral regurgitation				
Complex ventricular arrhythmias	Abnormal diastolic function				
Abnormal signal-averaged ECG	Abnormal contractile reserve				
Evidence of excessive sympathetic stimulation	Right ventricular dilation or dysfunction				
Protodiastolic gallop (S ₃)					

ECG = electrocardiogram; LV = left ventricular; NYHA = New York Heart Association.

TABLE 20–3 Two Pathways of Ventricular Dilation and Increased Filling Pressure

Hemodynamic (Acute)

Dilation and increased end-diastolic pressure caused when increased venous return or decreased ejection increases end-diastolic volume. This form of dilation occurs when physiological (functional) signaling increases sarcomere length, which increases the heart's ability to perform work (Starling law of the heart)

Architectural (Chronic)

Dilation and increased filling pressures caused when hypertrophy increases cardiac myocyte length and alters passive muscle properties. By increasing wall stress, this growth response increases the energy demands of the heart and decreases cardiac efficiency, initiating a vicious circle that worsens heart failure. This form of dilation occurs when abnormal transcriptional (proliferative) signaling causes eccentric hypertrophy (systolic dysfunction), and it tends to progress (remodeling)

Adapted from Katz A: Ernest Henry Starling, his predecessors, and the "law of the heart." Circulation 106:2986, 2002.

Activation	Cular checkpoints	gp130/STAT3	Phenotypic endpoints	
Acut (minut) Gene expressio (Acute phase)	te response phase es-24 hours) in profiles (Hypertrophic-failing pha	Hypertrophic phase (days-weeks)	► ↓	Failing phase (months-years)
Upregulation	Upregulation		Downregulation	Chamber size
c-fos S c-jun / junB H egr-1 (nur77 (Secreted proteins Metabolism/translation	Cytoskeletal proteins FHL1 (failing heart) Nonsarcomeric MLC2 Ion-channels/carriers L-type Ca ²⁺ channel SERCA2 Phospholambam Kv4.2, 4.3 Kv1.5 KChIP2 Signaling	Wall thickness	
	ANF, Lipocortin I, ET-1 HB-EGF, TGF-β1, BNP Ubiquitin, Pyruvate dehydrogenase α NADH ubiquinone oxidoreductase Osteoblast-specific factor 2 Creatin kinase, Myoglobin Cytoskeletal proteins αMHC, βMHC Phosphorylase kinase catalytic subunit Superoxide dismutase 2 MLC1a/v, MLC2a Aldose reductase, EF-1a, EF-2, IF-4AII MLC2v, Tropomyosin Troponin C, Myomesin Smooth muscle α-actin Ion-channels/carriers Na*/Ca²* exchanger, Kv1.4		Left ventricular end diastolic pressure	
			Left vermicular and systalic pressure	
SOCS3			(e.g., AF, VT, AVB)	
			Myocyte dropout Replacement fibrosis	
	α-cardiac actin FHL1 (HCM), Sarcosin	Signaling Gsa, βARK, Adenylyl cyclase VII	type-A like Ephrin receptor Others	Embryonic gene program
	Desmin, Gelsolin, A-kinase, C-kinase inhibitor-1, ILK Extracellular matrix Rap1B, SOCS3, Id-1, GATA-4 Fibulin, Fibronectin SP1/3, PGD/D2 synthase aminin, Collagen Others Heat shock 70 kDa proteins 1, 6, 8 Quaking protein, CARP		α1-Antichymotrypsin αB-Crystallin Plasminogen activator inhit TIM17	xitor-1

Strukturelle Organisation von Kandidatengenen der Dilatativen Kardiomyopathie

Gene Regulation in Heart Failure

Acute phase - upregulation of:

- c-fos
- c-jun
- junB
- egr-1
- nur 77
- BNP
- SOCS3

Hypertrophic – Failing Phase

Upregulation:

Secreted proteins:

- ANF, Lipocortin I, ET-1, HB-EGF, TGF- β 1, BNP,
- Osteoblast-specific factor 2

Cytoskeletal proteins:

- α MHC, β MHC, MLC1a/v, MLC2a
- MLC2v, Tropomyosin
- Troponin C, Moymesin
- Smooth muscle α-actin
- Skeletal α-actin
- α-cardiac actin
- FHL1 (HCM)m Carcosin, Desmin, Gelsolin Extracellular matrix:
- Fibulin, Fibronectin
- Laminin, Collagen

Others:

- Heat shock 70 kDa proteins 1, 6, 8
- Quaking protein, CARP

Metabolism/translation:

- Ubiqutin, Pyruvate dehydrogenase αNADH ubiquinone oxidoreductase
- Creatinin kinase, Myoglobin
- Phosphorylase kinase catalytic subunit
- Superoxide dismutase 2
- Aldose reductase, EF-1a, EF-2, IF-4AII
- 28S, 60S ribo'somal L3
- Ion-channels/carriers
- Na+/Ca 2+ exchanger, Kv1.4
- Voltages-dependent anion channel-1 Signalling:
- Gsα, βARK, Adenylyl cyclase VII
- A-kinase, C-kinase inhibitor-1, ILK
- Rap1B, SOCS3, ld-1, GATA-4
- SP1/3, PDG/D2synthase

Downregulation

Cytoskeletal proteins

- FHL1 (failing heart)
- Nonsarcomeric MLC2

Ion-channels/carriers

- L-type Ca2+ channel
- SERCA2
- Phospholamban
- Kv4.2, 4.3
- Kv1.5
- KChlP2

Singnalling

• type-A-like Ephrin receptor

Others

- α1 Antichymotrypsin
- αB-Crystallin
- Plasminogen activator inhibitor-1
- TIM17

- Hypertrophic-failing phase
- Secreted proteins ANF, Lipocortin I, ET-1, HB-EGF, TGF-β1, BNP,
- Osteoblast-specific factor 2
- Cytoskeletal proteins
- α MHC, β MHC, MLC1a/v, MLC2a
- MLC2v, Tropomyosin
- Troponin C, Moymesin
- Smooth muscle α-actin
- Skeletal α-actin
- α-cardiac actin
- FHL1 (HCM)m Carcosin, Desmin, Gelsolin
- Extracellular matrix
- Fibulin, Fibronectin
- Laminin, Collagen
- Others
- Heat shock 70 kDa proteins 1, 6, 8
- Quaking protein, CARP

- Metabolism/translation
- Ubiqutin, Pyruvate dehydrogenase αNADH ubiquinone oxidoreductase
- Creatinin kinase, Myoglobin
- Phosphorylase kinase catalytic subunit
- Superoxide dismutase 2
- Aldose reductase, EF-1a, EF-2, IF-4AII
- 28S, 60S ribo'somal L3
- Ion-channels/carriers
- Na+/Ca 2+ exchanger, Kv1.4
- Voltages-dependent anion channel-1
- Signalling
- Gsα, βARK, Adenylyl cyclase VII
- A-kinase, C-kinase inhibitor-1, ILK
- Rap1B, SOCS3, Id-1, GATA-4
- SP1/3, PDG/D2synthase

TABLE 20–2 Definitions	of Terms Used to Describe Systolic and Diastolic Function
Term	Definition
Preload	Distending force of the ventricular wall, which is highest at end-diastole and is responsible for sarcomere length at the beginning of systolic contraction
Afterload	Resisting force of the ventricular wall during systolic ejection, which is necessary to overcome peripheral vascular resistance or impedance; measures of afterload are peak-systolic, mean-systolic, or end-systolic wall stress
Contractility	Intrinsic ability of the myocardium to generate force at a certain rate and time (controlled for loading conditions)
Cardiac output	Stroke volume multiplied by heart rate
Stroke work	Mean systolic blood pressure multiplied by stroke volume
Stroke force	Stroke work per ejection time
Stress	Force per area
Wall stress	Pressure multiplied by radius, divided by wall thickness $\times 2$
Compliance or distensibility	Change in volume per change in pressure (dV/dP)
Elastance	Slope of the end-systolic pressure-volume relation
Elasticity	Property of a material to restore its initial length or geometry after distending force has been removed
Strain	Length change in percent of initial length; two definitions are used: LaGrangian strain e = (l - l _o)l _o and natural strain e = ln(l/lo)
Stiffness	Pressure per volume change (dP/dV). Ventricular stiffness is a measure for changes of the ventricle as a whole; myocardial stiffness is a measure for changes of the myocardium itself. Ventricular properties are characterized by instantaneous pressure-volume relations, whereas myocardial properties are best described by stress-strain relations.
Creep	Time-dependent lengthening of a material in the presence of a constant force
Stress relaxation	Time-dependent decrease of stress in the presence of a constant length
Viscoelasticity	Resistance of a material to length changes (strain) or the velocity of length changes (strain rate)

TABLE 20-8	Age Art Car	Age-Related Differences in LV and Arterial Coupling in Patients with Dilate Cardiomyopathy			
Parameters		Young Patients <35 yr	Intermediate- Aged Patients 35-50 yr	Older Patients >50 yr	
Maximum + dP (mm Hg/sec)	/dt	1011 ± 160	1170 ± 159	1147 ± 374	
Stroke work (g-m/m ²)		19 ± 10	20 ± 10	19 ± 10	
Pulse pressure (mm Hg)		26 ± 8	30 ± 11	38 ± 10	
Pulse wave velocity (m/sec)		4.7 ± 0.4	6.5 ± 0.9	7.9 ± 0.6	
Systemic vascular resistance (dyn-sec · cm ⁻⁵)		emic vascular 1872 ± 789 istance /n-sec · cm ⁻⁵)		2440 ± 770	
Arterial compliance (ml/mm Hg)		1.33 ± 0.63	0.72 ± 0.40	0.51 ± 0.17	

LV = left ventricular.

Adapted from Carroll JD, Shroff S, Arand P, et al: Arterial mechanical properties in dilated cardiomyopathy. J Clin Invest 87:1002-1009, 1991.

Actomyosin Interaction

Copyright © 2005 by Elsevier Inc.

Titin

Copyright © 2005 by Elsevier Inc.

Calcium fluxes in the myocardium

Copyright © 2005 by Elsevier Inc.

1. L-type calcium channel increases intracellular calcium and induces "calcium induced calcium release"

- cAMP increase through β adrenergic stimulation increases
- a) Calcium influx through the calcium channel
- b) Increase the rate of calcium uptake into the SR
- 3. Exit of calcium ions through

the Na/Ca exchanger and removal

of Na via the Na channel

Mitochondria can act as a buffer

for calcium concentrations.

Dilatative Kardiomyopathie (DCM) – mutierte Gene, Beispiele

Gen	Zahl der bekannten Mutationen	Mutation (Beispiel)	Komponente der Kardiomyozyte
Schwere Kette des β MHC			Sarkomer
Desmin			Intermediäres Filament
Muskel LIM Protein	1	W4R	Z-Scheibe
δ Sarkoglykan			Transmembranä res Protein
Myosin bindendes Protein C			Sarkomer
Dystrophin			Intermediäres Filament
Mitochondriale Gene			Mitochondrien

Genes and proteins in inherited arrhythmogenic diseases: the chromosomal locations of the genes known to

cause cardiac inherited disorders. The proteins encoded by each gene are schematically drawn in the figure.

Copyright © 2005 by Elsevier Inc.

Das waren tolle Zeiten!

William Harvey, der Erstbeschreiber des geschlossenen Blutkreislaufs, erklärt den politisch verantwortlichen seine Wissenschaft

Frankfurt, 1628

Harvey explains to the King Robert Hannah, 1848

Thank you very much for your attention!