Adrenergic signalling in the heart

- Steven Marston
- 17/10/2011
- CVBsc Module 1

Coordinated response of the heart to exercise

	Rest	Hard exercise
Oxygen consumption (litres/min)	0.25	3.0
Cardiac output (litres/min)	4.8	21.6
Heart rate (beats/min)	60.0	180.0
Stroke volume (ml)	80.0	120.0
End-diastolic volume (ml)	120.0	140.0
Residual volume (end-systolic)	40.0	20.0
Ejection fraction	0.67	0.86
Cycle time (s)	1.0	0.33
Duration of systole (s)	0.35	0.2
Duration of diastole (s)	0.65	0.13

Effects of noradrenaline

- The heart rate increases
 <u>chronotropy</u>
- Ventricular pressure rises quicker and higher arterial pressure is produced inotropy
- The duration of systole grows briefer and relaxation is faster. Iusitropy

h remunescentise singlysed lows kinetical from phosophorylastical roomphony M_{20} (no mis MOVS 56) one KCC pp (73) M_{20} (no mis MOVS 56) one KCC pp (73) distinguish analising of (22 mis ECTA, 2) M_{20} mis WC, pp (13) mis RCTA, 2) M_{20} mis WC, pp (13) mis RCTA, 2) M_{20} mis WC, pp (13) mis MCTA, 2) M_{20} mis VC, pp (14) mis MCTA, 2) M_{20} mis VC, pp (14) mis MCTA, 2) M_{20} mis MC and M_{20} mis MCTA, 2) M_{20} mis MC and M_{20} mis MCTA, 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20} mis MC and M_{20} mis MC and 2) M_{20}

17/10/2011

The β-adrenergic receptor couples with an inhibiting receptor kinase (BARK) and the stimulatory Gprotein/adenylate cyclase complex (GS-AC). Normal activation of this pathway increases cAMP synthesis and stimulates protein kinase A (PKA), which phosphorylates 1-1 protein to act as an inhibitor of phosphatase PP-1. PKA phosphorylates phos-

PP-1. PKA phosphorylates phospholamban (PLB) to enhance sarcoplasmic reticular (SR) calcium uptake, which is further augmented by the decline in PP-1 activity.

17/10/2011

