Proteomics in Infectious Disease

Dr. Shea Hamilton Department of Medicine (Paediatrics) Imperial College London Jan 2012

U.S. DEPARTMENT OF ENERGY

Proteome

- Proteome
 = PROTEins expressed by a genOME
- The proteome is
 - Time- and cell- specific
 - Includes isoforms and post-translational modifications
 - Very dynamic with time and in response to environment
 - Different between cell types

Proteomics

Classical proteomics

- total proteomes (e.g. from two differently treated cell lines)

- Functional proteomics
 - more limited protein sets

FIG. 1. Types of proteomics and their applications to biology.

Why is proteomics important?

- Proteins are active agents in cell they execute the biological functions encoded by genes
- Gene sequences (or genomes) and transcriptome analyses NOT sufficient to elucidate biological functions

"DNA makes RNA, RNA makes protein, and proteins make us." Francis Crick

Four main questions

(1) What proteins are present? (2) What other proteins does a particular protein interact with? (networks) (3) What does a particular protein look like? (structure) (4) What is the function of that protein? (context)

- Differential display of proteins (2DE)
 - mutants, knockouts, different stimuli....
- Protein identification
 - affinity purification (1DE, 2DE)
 - proteinchips (proteins or Abs)
- Protein modification
 - phosphorylation, glycosylation....
- Protein-protein interaction
- Protein ID by mass spectrometry

Overview of protein identification

1-D SDS-PAGE

Two dimensional electrophoresis (2-DE)

(1) Solubilise sample (2) Separate by charge (first dimension) - isoelectric focusing (IEF) - immobilised pH gradients (IPG) (3) Separate by molecular weight (second dimension) - SDS-PAGE

- where focused IPG strip is the sample

(4) Stain gel

- Coomassie blue
- silver staining
- fluorescent staining (SyPRO dyes)(5) Quantification
 - scanning and analysis of image
 - PDQuest, Image Master 2D elite

(6) Determine identity of spot of interest

- mass spectrometry
- N-terminal sequencing

Two Dimensional Electrophoresis

Control

Treatment

I Induced; R Repressed

Control

Treatment

MALDI-TOF and TOF/TOF MS on targeted proteins

Quantitative intercomparison of multiple samples (in replicate)

Cy2: 12-mix 12-mix 12-mix 12-mix 12-mix

Identification of proteins

- (Database search by spot location)
- Peptide digestion and mass spectrometry (1) Cut out band (2) Enzyme digestion (trypsin - Arg/Lys) (3) Extract peptides from gel piece (4) Analyse peptides using MALDI-TOF and/or Tandem MS/MS (5) Database searches

MALDI-TOF (time of flight)

- Soft ionisation
 tends to leave proteins intact
- Accuracy 0.1%
- Peptide digests and "whole" proteins

A. Electrophoresis

Β.

Tandem MS/MS can be used for protein sequencing

 identifies amino acid sequence of small peptides

Tandem MS/MS e.g. QTof

TOF analyzer

Collision cell (CID)

Problems of 2D-E

- Reproducibility
- Poor recovery of proteins (especially membrane or hydrophobic)
- Limited pH range
- Sensitivity of low abundant proteins
- Labour intensive
- In general automation difficult

Biomarker Discovery

 Surface-Enhanced Laser Desorption Ionisation (SELDI) Mass Spectrometry

Overview of SELDI process

SELDI combines two techniques:

ProteinChip® Arrays

Generates different protein profiles from the same sample

Slide courtesy of BIORAD

Sample Types

Mechanistic studies

- Cell lysates
- Cell culture media
- Laser capture microdissected cells
 - Tissue lysates

Animal models

- Tissue lysates
 - Liver
 - Brain
 - Kidney
 - Urine
- Serum or plasma
- Laser capture microdissected cells

Clinical samples

- Serum or plasma
- Urine
- CSF

- Pleural effusions
- Laser capture microdissected cells
 - Lavage/Sputum/Saliva/
 - Aspirates

ProteinChip® Preparation

1. Apply Crude Sample

Proteins bind to chemical or biological "docking sites" on the ProteinChip® surface through an affinity interaction.

2. Wash ProteinChip®

Proteins that bind nonspecifically, and buffer contaminants are washed away, eliminating sample "noise".

3. Add Energy Absorbing Molecules or "Matrix"

After sample processing the array is dried and EAM is applied to each spot to facilitate desorption and ionization in the TOF-MS.

SELDI-TOF-MS Detection

- Retained proteins are "eluted" from the array by the laser desorption ionisation. It is a Surface Enhanced Laser Desorption / Ionisation (SELDI).
- Ionised proteins are detected and their mass is determined by time-of-flight mass spectrometry (TOF-MS).

Differential Expression

Under specific bind/wash conditions, look for statistically significant up and down regulation of protein signals.

SELDI in clinical medicine

- Predominant in the field of cancer but increasingly used in infectious disease
- A common pattern of inflammation
- Bacterial pathogens can induce distinct proteomic or genomic signatures

Disease or etiological agent		
Viral	Hepatitis B/ C	
	SARS	
	HIV	
	HTLV	
	BK virus	
Bacterial	ТВ	
	Intra-amniotic infection	
	Endocarditis	
Parasite	Trypanosomiasis	

Hamilton & Langford 2010

SELDI and diagnosis of TB

Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum

Dan Agranoff , Delmiro Fernandez-Reyes, Marios C Papadopoulos, Sergio A Rojas, Mark Herbster, Alison Loosemore, Edward Tarelli, Jo Sheldon, A chim Schwenk, Richard Pollok, Charlotte F J Rayner, Sanjeev Krishna

• Phase 1: Culture-proven TB and controls

- Gambia and Uganda
- 4 protein biomarkers
- Sensitivity 94.4% and Specificity 91.8%
- Phase 2: UK cohort
 - Sensitivity 89% and Specificity 74%

Adult vs. childhood TB

Feature	Adults	Children
Disease type	Reactivation	Primary progressive disease
Symptoms	Cough, fever, chest pain, haemoptysis, weight loss	Negligible symptoms at time of primary infection
Infectivity	Smear positive pulmonary TB patients are infective to others	Paucibacillary disease, usually not infectious
Disease progression	Low risk of progressing to active disease	High risk of progressing to active disease

Estimates of Childhood Morbidity & Mortality from TB

- 1.7 million deaths per year
- 9 million new cases
- Despite current initiatives (DOTS) less than half of cases detected
 - Higher in children and HIV+ patients
- Current diagnostic tools inadequate (X-ray, Sputum, Tuberculin skin test)
- Misdiagnosis→ Increase in multi-drug resistant disease

Diagnostic methods - culture

Culture of samples from suspected sites of infection to determine the presence of *Mycobacterium tuberculosis*

Gold standard

Allows antibiotic sensitivity to be determined

- Paucibacillary load
- Obtaining samples
- Gastric aspirates
- Loss of bacteria during the processing/clean-up of the sample
- Time consuming
- Costly

Diagnostic methods – sputum smear microscopy

Samples stained using Ziehl Neelson staining procedure in which bacilli retain stain following washing with strong acid and appear red under the microscope

- WHO estimated 35% sensitivity
- 10⁴-10⁵ bacteria
- Based on sputum so difficulty in detecting non-pulmonary disease
- Cannot always distinguish between *M tb* and other NTM

Diagnostic methods - TST

Intradermal injection of Purified Protein Derivative followed by assessment of the induration 48hrs later Induration > 10 mm TB infection Induration < 10 mm No TB infection

- False positives
 - Exposure to environmental strains
 - Previous immunisation w/ BCG
- False negatives
- Subjectivity and variability
- Boosting
- Convenience and resources

Diagnostic methods – chest X-Ray

Used to detect lung abnormalities in people who have symptoms of TB

- Cannot confirm active TB
- Scarring from previous infection
- Confounding infections
- Low ability to detect early stage TB

Diagnostic methods - IFN-γ

Whole-blood or enzyme-linked immunospot (ELISpot) assays to detect T cell-specific responses

- New vs. past infection
- Active vs. latent
- Age-dependant response

AIM

To find serological biomarkers of tuberculosis disease which could be used in the development of a new diagnostic test for paediatric TB

Why look for serum biomarkers?

- Blood test
- Small quantity of serum required
- Single visit
- Faster diagnosis
- Treatment commenced sooner

Epidemiology of TB in South Africa

- One of 13 countries accounting for 75% of world's TB cases & 80% of deaths
- Estimated no. new cases per year ~ 495/100,000*
- Cape Town TB incidence, 2003
 - Adult TB: 845/100,000⁺
 - Childhood TB: 441/100,000⁺
- Primary healthcare
- Secondary and tertiary level services

* WHO, 2001 [†] Int J Tuberc Lung Dis, 2004

Cape Metropole

Recruitment

Western Cape Study Sites

Malawi Study Sites

-High HIV/ TB co-infection -Highest rates of TB -Highest childhood TB -Urban setting -High rates of HIV -High incidence of malaria -Lower incidence of TB -Rural setting

4 kDa protein biomarker

Positive or Negative biomarkers of infection

P/EP

- Highly characterised cohorts
- Large number of patients and healthy controls (1500)
- Children and adults recruited
- Two study sites to ensure that biomarkers can distinguish between TB and other disease
- Validation on 1800 independent samples

Next steps:

Sequence to identify these biomarkers of TB
 Confirm protein ID in a second cohort by ELISA

Applications of proteomics in paediatric infectious disease

- Unlimited
- Vaccine discovery
- Antibiotic discovery
- Host response
- Pathogen response
- Host-pathogen interactive biology
- Clinical and clinical-science
 interface studies

Analytical

Functional

Summary

- The ever increasing availability of completed genomic sequences and new technologies to examine the whole genome simultaneously
- Both genomic and proteomic methods can be used to study infectious disease (human and bacterial)
- Provide answers about:
 - Host response during infection
 - Bacterial evasion of host response
 - Identify new drug and vaccine targets
 - Better disease diagnosis