# **Epidemiological Methods for Determining Health in Populations**

Laura Robertson

# **Epidemiology: a definition**

The study of the distribution and determinants of health-related states or events in specified populations, and the application of this study to control of health problems (Last, 2001)

# **Objectives of Epidemiology**

Determine the extent of disease found in the community

Identify risk factors and/or causes of disease,

Study natural history of disease & prognosis

Evaluate preventive & therapeutic methods

# **Measuring Occurrence of Disease**

Quantify how common a disease is in a specified population in a specified time-frame:-

INCIDENCE: occurrence of new cases

PREVALENCE: frequency of existing cases

# **Measuring Incidence**

### Incidence

Number of *new* cases occurring in the population during a specified period of time in a population *at risk* for developing the disease

Number of *new* cases of a disease  $I = \frac{\text{during a specified time}}{\text{Number of persons at risk of developing the disease}}$ during a specified time

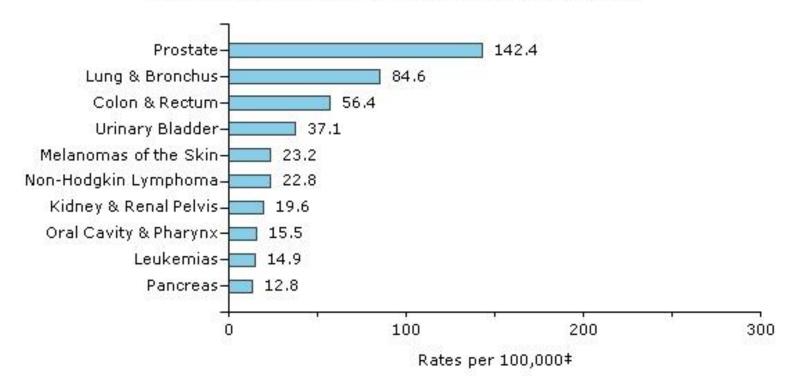
# **Measuring Incidence**

### When calculating incidence:

Any individual included in the denominator must have the potential to become part of the group that is counted in the numerator

What is the population at risk for:

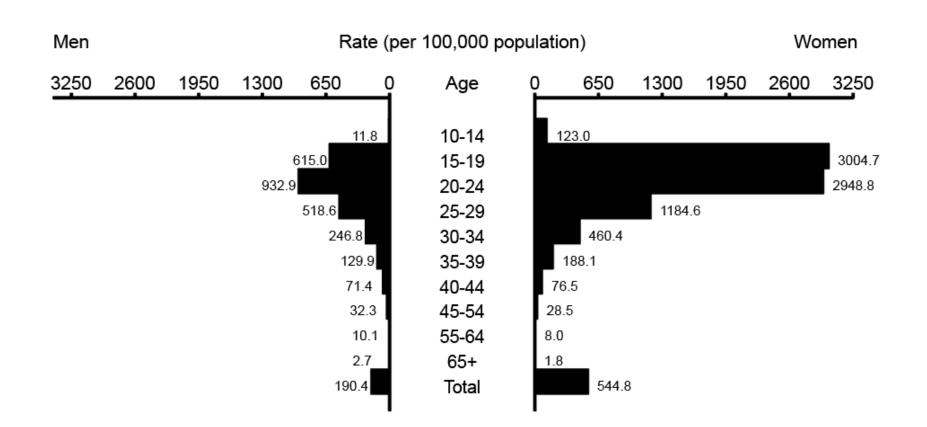
- Cervical cancer?
- Heart disease?


# **Measuring Prevalence**

#### Prevalence

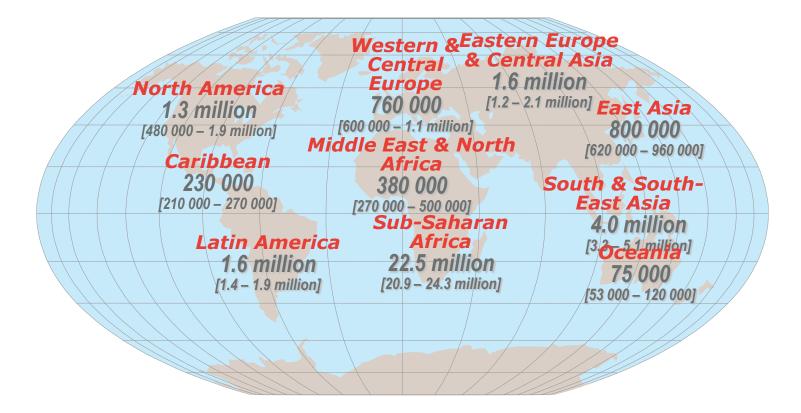
 Number of affected persons present in the population at a specific time divided by the number of persons in the population at that time

Number of cases  $P = \frac{\text{during a specified time}}{\text{Number of persons in the population}}$ during a specified time


### **Interpreting Incidence and Prevalence Measures**



Top 10 Cancer Sites: 2005, Male, United States—All Races


Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2005 Incidence and Mortality Web-based Report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; 2009. Available at: <u>www.cdc.gov/uscs</u>

### **Chlamydia Incidence, United States 2007**



Source: US Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance, 2007. www.cdc.gov/std

### **Estimated Persons living with HIV/AIDS, 2007**



Source: WHO www.who.int

### **Relationship Between Incidence and Prevalence**

When a disease is rare, prevalence and incidence can be described by the following relationship:

### *Prevalence* ~ *Incidence* X *Duration*

What factors determine duration of disease?

- natural history
- death
- treatment

# **Interpreting Incidence and Prevalence**

| Population                  | Number<br>Persons<br>Positive for TB<br>on Chest X-<br>Ray | Point<br>Prevalence<br>(per 1000<br>persons) | Duration of TB<br>(years) | Incidence<br>(Cases per<br>Year) |
|-----------------------------|------------------------------------------------------------|----------------------------------------------|---------------------------|----------------------------------|
| Town A<br>(1000<br>persons) | 100                                                        | 100                                          | 25                        | 4                                |
| Town B<br>(1000<br>Persons) | 60                                                         | 60                                           | 3                         | 20                               |

\*Example From Gordis Epidemiology 2<sup>nd</sup> Edition \*\* This is hypothetical data

# **Assessing Disease and Mortality**

### All Cause Mortality Rate

- "Incidence of Death": Total number of deaths from all causes during a specified period of time in a population
- Also simply referred to as the mortality rate

|                         | Number of Deaths         |
|-------------------------|--------------------------|
| Annual Mortality Rate = | in one year              |
|                         | Number of persons in the |
|                         | population at mid-year   |

# **Assessing Disease and Mortality**

Disease-Specific Mortality Rate or Cause-Specific Mortality Rate

• Total number of deaths from a specific disease during a specified period of time in the total population

|                                | Number dying from disease X |
|--------------------------------|-----------------------------|
| Disease X Specific Mortality = | over a specific time period |
| Discuse / Opcome Montality -   | Total in the population     |
|                                | over a specific time period |
|                                |                             |

Nu unale a ruelu du dua au funa una ella a a a a

# **Assessing Disease and Mortality**

### **Case-Fatality Rate**

 The percent of people diagnosed with a certain disease who die within a certain time after diagnosis

|                        | Number dying within a certain time |  |
|------------------------|------------------------------------|--|
| Case Fatality Rate $=$ | period after disease onset         |  |
|                        | Number with a specified disease    |  |

### **Assessing Disease and Mortality**

- •In 2010, Healthy Land has 100,000 people:
  - 20 are sick with malaria
  - 18 die from malaria
- What is the malaria-specific mortality rate?
  - 18/100,000 = 0.00018 = 0.18%
- What is the malaria case-fatality rate?
  - 18/20 = 0.9 = 90%

# **Estimating Disease Burden**

Determining the burden of disease

Endemic

 Habitual presence of a disease with a given geographical area or the usual occurrence of a disease within a certain area – i.e., diarrheal diseases in developing countries

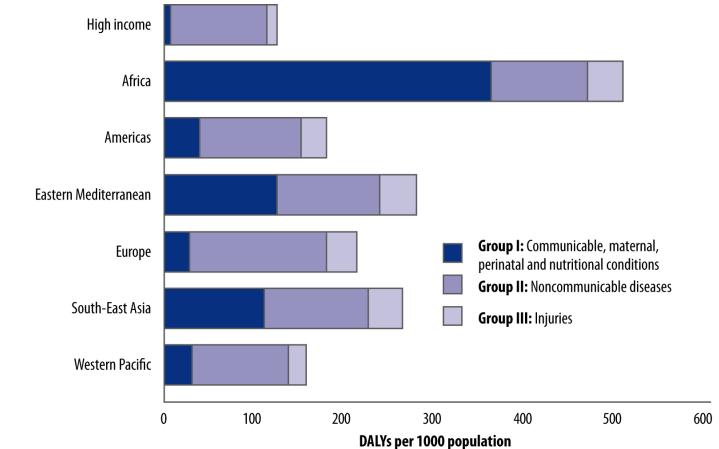
#### Epidemic

 Occurrence of disease in a community or region in excess of normal expectancy – i.e., cholera in Zimbabwe; Ebola in DRC

Pandemic

• Worldwide epidemic – i.e., HIV

# **Estimating Disease Burden**


Disability-adjusted life year (DALY)

- Measure of the burden of disease on a defined population and the effectiveness of interventions.
- Based on an adjustment of the life expectancy to allow for long-term disability: "healthy life years lost".
- Calculated using a disability weight (proportion less than one) that reflects the burden of disability.
  - limited by lack of necessary data to calculate the disability weight.
  - postulates a continuum from disease to disability to death that is not universally accepted

Last (2001)

# **Estimating Disease Burden**

Burden of disease by broad cause group and region, 2004



Source: WHO.Global Burden of Disease: 2004 Update.

http://www.who.int/healthinfo/global\_burden\_disease/2004\_report\_update/en/index.html

#### **Evaluating Trends in Incidence and/or Prevalence**

700 600 500 **Rate per 100,000** 300 300 500 Males Females 200 100 0 Year

Chlamydia in the United States, 1984 - 2008

Source: US Centers for Disease Control and Prevention. Extracted from www.wonder.cdc.gov

### **Data Used to Assess Health in Populations**

- •Surveillance Data
  - Passive Surveillance
  - Active Surveillance
  - Sentinel Surveillance
- Observational Data
  - Cross Sectional Surveys
  - Case Control Studies
  - Cohort Studies

## **Surveillance Data**

The ongoing systematic collection, analysis, interpretation and dissemination of data reflecting the current health status of a community or population

- Monitor implementation of health programs
- Understand local epidemiology
- Assessing changes in trend of disease or its distribution
- Identifying specific groups at risk
- Predict patterns in occurrence of diseases

# **Surveillance Data**

- Passive Surveillance
  - Monitoring of disease through routinely collected reports sent to government agencies/Ministries of Health/NGOs
    - Reportable diseases (i.e., measles, influenza, syphilis)
    - Disease registries usually clinical data
    - Birth and death certificates
  - Relatively inexpensive and easy to develop
  - Allows for comparison of trends over time, across communities and across countries
  - Underreporting often a problem
  - Lack of completeness of data

## **Surveillance Data**

- Active Surveillance
  - Case-finding activities often done after an index case identified, but can be done routinely
    - Field visits to health care facilities (clinics/hospitals)
    - Interviewing physicians and patients
    - Reviewing medical records
    - Surveying villages
  - More accurate data than passive surveillance
  - Resource intensive

## **Surveillance Data**

- Sentinel Surveillance
  - Use of community-based health or occupational sites to monitor for a specific disease activity
    - Monitoring ANC clinics for maternal and child health outcomes
    - Monitoring rural clinics for malaria
    - Monitoring of drug treatment centres for HIV
  - Often used in developing countries where passive surveillance incomplete
  - If medical facility used as surveillance site, tends to identify only sickest of cases
  - Tends to overestimate population prevalence if surveillance site is among high-risk individuals (i.e. HIV in IDUs)

### **Cross Sectional and Case Control Studies**

• Cross Sectional Study: Select a sample of persons from the population of interest and measure disease and an exposure simultaneously

• Case Control Study: Select a sample of persons from the population with a disease and a sample of persons from the population without a disease and measure rates of exposure in each group

- Can calculate the prevalence of disease of interest in total study population
- If study population is representative of underlying population (i.e., random sample of adults in UK) can infer prevalence in underlying population
- Can be used to identify groups at higher risk for a particular disease (though difficult to infer causes of disease)
- Cannot be used to calculate incidence!

### **Cohort Studies**

•Cohort Study – Select a sample of persons from the population with a certain exposure and a sample of persons without exposure and compare rates of development of a disease over time in each group

- Can calculate incidence and prevalence of disease in total study population
- If study population is representative of the underlying population, can infer incidence and prevalence of disease in underlying population
- Can identify groups at higher risk for developing disease and make more robust inferences regarding causation.

### **Strengths and Limitations of Surveillance Data**

- Estimates disease in community rather than a population sample
- In many areas, conducted routinely over long time periods so compare trends over time
- Reporting often falls to health care providers or district health officers
  - Underreporting
  - Inconsistencies in diagnostic tools or reporting between clinics/districts
- Incomplete reporting from areas difficult to reach or lacking resources for surveillance (e.g., rural areas lacking paved roads)
- Resource constraints may affect type of diagnostic criteria used
  - Laboratory confirmed diagnoses vs. syndromic diagnoses
  - Less sensitive monitoring of environmental risk factors (i.e., particulate air pollution)

### **Strengths and Limitations of Observational Study Data**

• If representative population sample used can be used to estimate incidence and/or prevalence of disease in areas where health data is not routinely collected or where routine monitoring data are incomplete

- Generally, observational studies for research purposes often use more accurate laboratory tests than clinics to assess disease status
  - Use of NAATs to identify gonorrhoea or chlamydia in research study vs. syndromic diagnostics in a rural clinic

 Since population sampling is used, using results to estimate population prevalence/incidence subject to sampling errors and selection biases

### **General Cautions**

•Frequency at which data is routinely collected and/or reported

- How disease reporting/status determined
  - Laboratory tests
  - Clinical Diagnoses
  - Self report (Have you ever received a diagnosis of or do you currently have Disease X?)

•Representativeness of clinics/districts reporting data to central health authority

•Representativeness of population samples used in research studies

### **Common Data Sources**

- Demographic and Health Surveys (DHS) <u>www.measuredhs.come</u>
- Doctors Without Borders/Médecins Sans Frontières
  <u>www.doctorswithoutborders.org</u> or <u>www.msf.org.uk</u>
- •Path www.path.org
- •Population Services International <u>www.psi.org</u>
- •RTI International www.rti.org
- US National Library of Medicine PubMed <a href="http://www.ncbi.nlm.nih.gov/pubmed">http://www.ncbi.nlm.nih.gov/pubmed</a>
- UNAIDS <u>www.unaidstoday.org</u>
- UNICEF <u>www.unicef.org</u>
- •USAID http://www.usaid.gov/our work/global health/
- •US Centers for Disease Control and Prevention <u>www.cdc.gov/globalhealth</u>
- •World Bank www.worldbank.org
- •World Health Organization: www.who.int

#### **References**

Gordis, Leon. (2009). *Epidemiology* (4<sup>th</sup> ed.) Saunders. Lilienfield, A. Lilienfield, D. and Stolley, P. (1994). *Foundations of Epidemiology* (3rd ed.) Oxford University Press. Rothman, K. Greenland, S., Lash, T. (2008) *Modern Epidemiology* (3<sup>rd</sup> ed.) Lippincott, Williams and Wilkens