l College	MRC
Can we eliminate malar current intervention to	ia with ools?
Lessons from mathematical n malaria control & elimina	nodels for ation
María-Gloria Basáñez	
(with slides from Azra Ghani & Emma Da	awes)
Department of Infectious Disease E	pidemiology
MRC Centre for Outbreak Analysis	& Modelling
m.basanez@imperial.ac.uk a.ghani@imp	perial.ac.uk

Imperial College London Control, Elimination, Eradication

Box I Definitions (WHO 2006a)

- Malaria control is reducing the disease burden to a level at which it is no longer a public health problem.
- Malaria elimination is interrupting local mosquito-borne malaria transmission in a defined geographical area, i.e. 0 incidence of locally contracted cases.
- Malaria eradication is the permanent reduction to 0 of the
- worldwide incidence of malaria infection caused by a specific agent; i.e. applies to a particular malaria parasite species.

Mendis et al. (2009) Trop Med Int Hlth 14: 802-809

MRC

Consider differer characterising ac > Transmission > Seasonality I EIR occurring months of tra > Vector specie	nt settings cross Afric n intensity Index (pro g within th ansmission es combin	a: (EIR) portion of ne peak 3 n) nations	0.8 0.6 0.2 0.0 Transmission intens	Uganda Congo Congo Cameroon Ghana Tanzania DAn, turestus An, arabiensis An, arabiensis
Location	Population	Reported (fitted)	Type of transmission	
		annual FIR (ibony)	Type of transmission	Anopheles species
Kjenjojo, Uganda	Rural	annual EIR (ibppy) 7 (3)	Low, perennial	Anopheles species composition 65% An. gambiae s.s., 35% An. funestus
Kjenjojo, Uganda Maputo, Mozambique	Rural	annual EIR (ibppy) 7 (3) 28 (46)	Low, perennial L Moderate, perennial M	Anopheles species composition 65% An. gambiae s.s., 35% An. funestus 46% An. funestus, 42% An. arabiensis
Kjenjojo, Uganda Maputo, Mozambique Kinkole, DRC	Rural Rural Rural	annual EIR (ibppy) 7 (3) 28 (46) 48 (43)	Low, perennial L Moderate, perennial M Moderate, perennial M	Anopheles species composition 65% An. gambiae s.s., 35% An. funestus 46% An. funestus, 46% An. rabiensis Nearly 100% Nearly 100% An. gambiae s.s.
Kjenjojo, Uganda Maputo, Mozambique Kinkole, DRC Nkoteng, Cameroon	Rural Rural Rural Rural Rural Rural	anual ER (ibpy) 7 (3) 28 (46) 48 (43) 94 (81)	Low, perennial L Moderate, perennial M Moderate, perennial M Moderate, perennial M	Anopheles species composition 65% An. gambiae s.s., 35% An. funestus 46% An. funestus, 42% An. arabiensis Nearly 100% An. gambiae s.s. 72% An. funestus, 28% An. gambiae s.s.
Kjenjojo, Uganda Maputo, Mozambique Kinkole, DRC Nkoteng, Cameroon KND, Ghana	Rural Rural Rural Rural Rural Rural Rural	anual EIR (tibpy) 7 (3) 28 (46) 48 (43) 94 (81) 630 (586)	Low, perennial L Moderate, perennial M Moderate, perennial M Moderate, perennial M High, seasonal H	Anopheles species composition 65% An. gambiae s.s., 35% An. funestus 45% An. funestus, 42% An. arabiensis Nearly 100% An. gambiae s.s. 72% An. funestus, 28% An. gambiae s.s. 60% An. gambiae s.s., 40% An. funestus,

		-

Imperial College MRC Cours **Scenarios for Intervention Packages** • Prior to 2000: > assume the only intervention available was treatment with Sulphadoxine-Pyrimethamine (SP) • From 2000 to 2010: > increase LLIN use from 0% to 20% (Noor et al. 2009 BMC Public Health 9:369) switch to ACT as first-line therapy • From 2010: introduce range of intervention packages Range of endpoints: > change in parasite prevalence > change in EIR

time to reaching parasite prevalence of <1%</p>

Imperial College Vaccine Impact, Low transmission settings

- RTS,S vaccine in Phase III trials prevents infection (pre-erythrocytic vaccine – PEV)
- Efficacy ~50% from Phase II studies

Imperial College

- > Likely to be delivered via Expanded Programme of Immunisation (EPI)
- Additional impact on transmission greatest in low transmission settings

Take Home Messages. I

- The Basic Reproduction Ratio (R_0) of malaria depends on:
 - entomological components (vector density, biting rate on humans, probability of daily survival)
 - components of the vector-parasite interface (probability of successful establishment in the vector, duration of sporogony)

MRC

- components of the human-parasite interface (probability of successful establishment in the human, duration of infectiousness)
- Elimination programmes aim at reducing R_0 below 1 by implementing interventions that target the above
- Mathematical models provide useful tools to summarise and update current knowledge on the biology and epidemiology of malaria and its transmission in a quantitative framework, so that impact of interventions can be measured / anticipated

Imperial College London

•

Take Home Messages. II

MRC .

Mathematical models are important in all stages of malaria elimination programs:

- > Planning: Dermining wthat is achievable, with what tools
- Reducing transmission: Identifying optimal combinations and strategies
- Monitoring: Helping to design appropriate surveillance strategies
 Holding the line: Advising on tools needed to prevent re-introduction
- Can also aid in defining properties of new tools needed in areas where current tools are insufficient
- Importance of local vector species composition (feeding / resting behaviour) as well as overall transmission intensity
- Currently available tools insufficient to eliminate malaria in high transmission settings (but can help reduce disease / mortality burden)
- So far model assumes no development of insecticide or drug resistance
- Need to combine epidemiological with evolutionary models

