Imperial College London

Oncogenes and Tumour Suppressors

Nigel J Gooderham

Biomolecular Medicine, Faculty of Medicine Imperial College London

Oncogenes and Tumour Suppressors Nigel Gooderham

Learning Objectives

- Define protooncogene, oncogene and tumour suppressor gene.
- Explain how a protooncogene can be activated to an oncogene.
- Explain how activating an oncogene can disrupt tightly controlled pathways in the cell.
- Describe how rare heritable cancers have led to an understanding of tumour suppressor genes.
- Summarise the role of the tumour suppressor gene p53 in cellular decision making.
- Describe the way in which successive gene mutations are thought to lead to clinical cancer.

The Hallmarks of Cancer

The Cancer Cell Phenotype

- Disregard of signals to stop proliferating.
- Disregard of signals to differentiate.
- Capacity for sustained proliferation.
- Evasion of apoptosis.
- Ability to invade.
- Ability to promote angiogenesis.

Cell cycle - The key to life, death and cancer

-Cycle checkpoints (growth arrest ensures genetic fidelity). -Specific proteins accumulate/ are destroyed during the cycle.
"Cyclins, cycle dependent kinases, cycle dependent kinase inhibitors
-Permanent activation of a cyclin can drive a cell through a checkpoint.

Critical gene targets Proto-oncogenes

- Proto-oncogenes code for essential proteins involved in maintenance of cell growth, division and differentiation.
- Mutation converts a proto-oncogene to an oncogene, whose protein product no longer responds to control influences.
- Oncogenes can be aberrantly expressed, overexpressed or aberrantly active.
- Eg MYC, RAS, ERB, SIS
- Proto-oncogenes can be converted to an oncogene by a single mutation.

Oncogene activation

Normal proto-oncogene
Mutation in the coding sequence (point mutation of deletion)

Gene amplification (Multiple gene copies)

Overproduction of normal protein

Chromosomal translocation (Chimaeric genes)

Insertional mutagenesis
(e.g. viral infection)

Aberrantly active protein

Philadelphia chromosome

Ph $22 q^{-}$

Proteins involved in signal transduction are potential critical gene targets (proto-oncogenes)

Activation of proto-oncogenes to oncogenes

 disrupts normal activity

Mutant RAS has aberrant activity

-Upon binding GTP, RAS becomes active.
-Dephosphorylation of the GTP to GDP switches RAS off. -Mutant RAS fails to dephosphorylate GTP and remains active.

The Mitogen-activated Protein Kinase (MAPK) Cascades

- RAS genes (Ki-, $H-$, and $N-R A S$) are highly conserved.
- Membrane bound GTPases (GTP bound - active, ceas, chaces) GDP bound inactive).
- RAS proteins are central to the stimulation of cell proliferation.

Chemokines, Hormones, Transmitters (e.g. interleukins serotonin, etc.)

Oncogenes and Human Tumours

Gene	Function	Mechanism of activation	Location	Associated human cancers
SRC	Tyrosine kinase	Overexpression/ C-terminal deletion	Cytoplasmic	Breast, colon, lung
MYC	Transcription factor	Translocation	Nuclear	Burkitt's lymphoma
JUN	Transcription factor	Overexpression/ deletion	Nuclear	Lung
Ha-RAS	G protein	Point mutation	Cytoplasmic	Bladder
Ki-RAS	G protein	Point mutation	Cytoplasmic	Colon, lung

Critical gene targets Tumour suppressor genes

- Typically proteins whose function is to regulate cellular proliferation, maintain cell integrity.
- E.g. RB, .
- Each cell has two copies of each tumour suppressor gene.
- Mutation or deletion of one gene copy is usually insufficient to promote cancer.
- Mutation or lost of both copies means loss of control.

Inherited cancer susceptibility (discovery of tumour suppressor genes)

Features

- Family history of related cancers.
- Unusually early age of onset.
- Bilateral tumours in paired organs.
- Synchronous or successive tumours.
- Tumours in different organ systems in same individual.
- Mutation inherited through the germline.

Retinoblastoma

- Malignant cancer of developing retinal cells.
- Sporadic disease usually involves one eye. Hereditary
 cases can be unilateral or bilateral and multifocal.
- Due to mutation of the RB1 tumour suppressor gene on chromosome 13q14.
- RB1 encodes a nuclear protein that is involved in the regulation of the cell cycle.

Functional classes of Tumour suppressor genes

- Regulate cell proliferation
- Maintain cellular integrity
- Regulate cell growth
- Regulate the cell cycle
- Nuclear transcription factors
- DNA repair proteins
- Cell adhesion molecules
- Cell death regulators
- Suppress the neoplastic phenotype

Tumour Suppressor Genes and Human Tumours

Gene	Function	Iocation	Associated human cancer
B53	Cell cycle regulator	Nuclear	Many (colon, breast, bladder, lung etc) Breast, ovarian, prostate Prostate, glioblastoma
PTEN	Cell cycle regulator	Tyrosine and lipid phosphatase	Nuclear
Cell signaling	Cytoplasmic	Cytoplasmic	Colon
$p 16^{-I N K 4 A ~}$	Cell cycle regulator	Nuclear	Colon and others
$M L H 1$	Mismatch repair	Nuclear	Colon, gastric

P53 - the guardian of the genome

Although p53 is a tumour supressor gene, mutants of p53 act in a dominant manner and mutation of a single copy is sufficient to get dysregulation of activity.

APC tumour suppressor gene (Familial adenomatous polyposis coli)

- Due to a deletion in 5 q21 resulting in loss of APC gene (tumour suppressor gene).
- Involved in cell adhesion and signaling.
- Sufferers develop multiple benign adenomatous polyps of the colon.
- There is a 90% risk of developing colorectal carcinoma.

$A P C$ tumour suppressor gene

- The tumour suppressor gene APC participates in the WNT signalling pathway.
- APC protein helps control the activity of β-catenin and thereby preventing uncontrolled growth.
- Mutation of $A P C$ is a frequent event in colon cancer.

The route to cancer

Proto-oncogene
 Tumour suppressor gene

Cancer

Proto-oncogene
Defective tumour suppressor gene

The development of colo-rectal Cancer

Oncogenes and tumour suppressor genes

Oncogene

Gene active in tumour

Specific translocations/point mutations

Mutations rarely hereditory

Dominant at cell level

Broad tissue specificity

Leukaemia and lymphoma

Tumour suppressor gene

Gene inactive in tumour

Deletions or mutations

Mutations can be inherited

Recessive at cell level

Considerable tumour specificity

Solid tumours

Summary

- Human cancer involves damage to DNA, or inheritance of aberrant sequences, at critical gene targets.
- These targets, proto-oncogenes and tumour suppressor genes, regulate cell cycle decisions (mitosis, arrest, differentiation, apoptosis).
- The 'guardian of the genome', p53 is a key player in decision making during the cell cycle.
- Studies of rare heritable cancers have led to an understanding of tumour suppressor genes.
- Colon cancer is a model for many of these factors.

Reading material

ר The Cancer handbook $2^{\text {nd }}$ Ed (MR Alison, 2007, Wiley pub).
ר Cells (B. Lewin et al. 2007, Pub Jones and Bartlett)
ר Review articles in journals Cell and Cancer Research.

