Bone: Structure, function, and healing

Barry Andrews FRCS (Tr and Orth)

Professor JP Cobb

3 main functions

- Calcium Reservoir
- Haematopoietic marrow
- Mechanical

206 bones in the skeletonWeighs 2kg

Wednesday, 8 February 12

Long Bone

Woven /Immature Bone

- Embryonic skeleton
- Initial fracture repair tissue (early hard callus)
- Rapid rate of deposition and resorption
- Irregular woven pattern of collagen fibrils
- Weak and flexible
- Highly cellular

Lamellar (Mature) Bone

•Cortical •Cancellous

Wednesday, 8 February 12

•Lamellae

Cortical bone (compact bone)

- Type of lamellar bone80% of adult skeletonDiaphyses of long bones
- •Dense
- •Stiffer
- •Resistant to bending

•Haversion systems

Haversion systems (Osteons)

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Haversion systems (Osteons)

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Cancellous (trabecular) bone

- •Type of lamellar bone
- •Metaphyses and epiphyses
- •3D lattice of trabeculae
- •Aligned according to Wolff's Law (stress)
- •No Haversion systems
- •Parallel sheets of lamellae

Cancellous (trabecular) bone

- •Large surface area
- •High turnover and metabolic rate
- •Less dense
- •Less elastic (more brittle)
- •Less strong

Periosteum

- Circumferential connective tissue
- •Responsible for growth in diameter
- •Cambial layer
- •Fibrous layer

Bone

Percentage cells and matrix

Wednesday, 8 February 12

Osteoblasts

- •Bone-forming cells
- •Generate the organic, non-mineralized matrix
- •Line the surface of the bone
- •May become osteoclasts or bone lining cells

Osteoblasts

Intense basophilic stain,

- Produce alkaline phosphatase
- Respond to Parathyroid hormone (PTH)
 - »1,25 Vit D
 - » Glucocorticoids
 - » Oestrogen
 - » Prostaglandins

Osteocytes

Maintain bone

- •Are osteoblasts trapped by matrix
- •90% of cell population
- •Canaliculi
- Calcium homeostasis
- •Wolff's Law

Wednesday, 8 February 12

Osteoclasts

- Resorb bone
- Large size
 - 100 microns
- Lie in pits
- Howship's Lacunae
 May be
 - Inactive
 - Active

»show brush border

Osteoclasts in disease

- Multiple myeloma
- Metastases
- •Pagets
- Osteopetrosis
- •?Implant loosening
- •Stopped by bisphosphonates

Bone matrix

- •60% inorganic compressive
- •40% organic tensile strength
- Inorganic
 - Calcium hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂]
 - Osteocalcium phosphate (brushite)
 - Mineralization of organic matrix
 - 99% total body calcium
 - 85% phosphorous

Bone matrix

- •Organic matrix
 - 90% Type 1 collagen
 - Proteoglycans
 - Non-collagenous matrix proteins
 - Growth factors
 - Cytokines

Fractures: Loss of function

High vs low energy

Wednesday, 8 February 12

Fracture Healing

Blood Flow is the major factor in healing

Wednesday, 8 February 12

Fracture Healing

•Perren's strain theory

•Secondary (callus) bone healing

•Primary (direct cortical) bone healing

•Examples

•Non-union

Perren's strain theory

- Amount of movement (strain) = type of healing / tissue formed
- •Strain = Change in length / initial length
 - No units
- •Large movements = Large strain

Perren's Strain theory

- •Granulation tissue
- •Fibrous tissue
- •Fibrocartilage
- Lamellar bone
- •As fractures heal, they move less, and hence progress down the list.
- Higher strain = callusno/low strain = no callus

Secondary (callus) bone healing

- Relative stability
- •Higher strain
- Inflammation
- •Repair <2 weeks
 - Soft callus
 - Hard callus 1-4 months

•Remodelling - Years

Remodelling & Cutting Cones

Stopped by bisphosphonates

Secondary Healing Model in Rat's Tibia

Wednesday, 8 February 12

Primary (direct healing)

- •Same as remodelling stage of secondary healing
- •Cutting cones
- •No callus
- •Only when:
 - Anatomical reduction
 - Compression
 - Very low strain

Factors detrimental to bone healing

- •Soft-tissue trauma
- Loss of blood supply
- •Smoking affects osteoblast function
- Nutrition
- •Age

•Head injury accelerates healing!

Type of Fracture Healing Based on Type o	
Type of Immobilization	Predominant Type of Healing
Cast (closed treatment)	Periosteal bridging callus
Compression plate	Primary cortical healing (remodeling)
Intramedullary nail	Early-periosteal bridging callus
	Late-medullary callus
External fixator	Dependent on extent of rigidity
	Less rigid-periosteal bridging callus
	More rigid-primary cortical healing
Inadequate	Hypertrophic nonunion

Plaster Cast Fixation needs skills

Traction is gentle and safe

External Fixation

For open fractures

Internal Fixation

For closed injury

Internal Fixation/ Primary Healing

Direct Versus Indirect Healing

Biological Plates and Callus

SUMMARY

- Function
- Types of bone
- Cells and matrix
- Periosteum
- Perren's strain theory
- Fracture healing
- Orthopaedic methods

