CANCER 9

THE CYTOSKELETON Professor Mike Ferenczi

Filament systems	Microfilaments. Thin filaments in muscle , made up of <i>actin, troponin</i> and <i>tropomyosin</i> ,		
	Microtubules (MTs), made up of tubulin, and		
	Intermediate filaments, made up of the cell type.	a number of proteins depending on	
	Each is formed by polymerisation of s There is a wide variety of filament-as	subunits sociated proteins:	
	 Control polymerisation/depolymerisation Link filaments to membranes, organelles, extracellular material via other proteins Move organelles, or the cell itself : motor proteins Control the movement of motor proteins 		
	Highly dynamic. Controls cell shape, rigidity and motility. Cross-linking turns cytoplasm from liquid to gel		
	5 · · · · · · · · ·	Imperial College London	
Cytoskeletal filament dyna	All 3 filament types are made by pol	ymerisation of monomer	
	Free monomer must be in equilibrium with polymer - but the equilibrium can be altered by other proteins that bind to either free monomers or to filaments near the site of monomer addition		
	The equilibrium dynamics are simila microtubules (they differ in detail the intermediate filaments	r in principle for actin filaments and bugh), but rather different for	
		The intermediate filament cytoskeleton in epithelial cells: keratins (purple) give the cel resilience by making cytoplasmic networks and lamins (green) protect the DNA by reinforcing the nuclear envelope. Professor Birgit Lane FRSE, University of Dundee	

namics

Imperial College London

0

NICITIENT OF THE PROVINCE OF THE PROVINCE

File	Microtubule (and actin filament) subunits contain a nucleotide
Imen	For tubulin this is GTP
t nuc	After polymerisation this hydrolyses slowly to GDP
leoti	[In the case of actin filaments the nucleotide is ATP/ADP]
des	
	Imperial College London

	The switch between filament growth and depolymerisation is dynamic instability.	known as
Dynar	Polymerisation/depolymerisation of MTs depend on cellular concentrations of MTs, GTP, GDP, tubulin and microtubule associated proteins (MAPs) which affect the stability of the plus and minus-ends of MTs.	
nic in	Free GDP-subunits resulting from depolymerisation are conv GTP-subunits by nucleotide exchange	erted to
nstability	Since GTP hydrolysis is energetically favoured, microtubule polymerisation can do work in the cell	
		Imperial College London

During mitotic spindle assembly, some microtubules are stabilized by the proteins of the kinetochoreDuring metaphase, subunits are added to the plus end of a microtubule at the kinetochore and are removed from the minus end at the spindle

pole (microtubules maintain constant length) At anaphase the chromatid is released from attachment to its sister at the metaphase plate and the kinetochore moves up the microtubule, removing subunits from its plus end as it goes (chromatid carried to spindle pole).

Microtubules during mitos

Part of chromatid movement is due to the simultaneous loss of tubulin subunits from the minus end of the microtubules at the pole.

Treadmilling: growth at one end, and depolymerisation at the other end. Proteins attached to MTs eventually end up at the minus end of the MTs.

Nicotubule associated proteins (MAP) like tau in brain tissues.

Stress fibres are found in fibroblasts and other cells where

Stress fibres are cables of actin

cell adhesion is important.

<mark>8</mark>1

Actini-pinding proteins (April s) in masce	Actin-hinding proteins (ARPs) in muscle	Examples: Myosin motors: many classes Tropomyosin: part of thin filaments in smooth and striated muscle. Involved in regulation Troponin: confers ca-regulation of contraction to thin filaments in skeletal muscle. Caldesmon: smooth muscle regulation of contraction Calponin: smooth muscle regulation α-actinin: cross-linking protein
	Ē	α-actinin: cross-linking protein
	Examples of actin bir	Gelsolin: capping, nucleating and severing activity. Calcium activated capping and severing. Also bundles actin filaments
		Villin: nucleates, severs and caps actin filament. Similar to Profilin: binds actin monomers (ATP-actin) and provides pool for actin elongation at barbed end
cytopl		Cofilin: regulated by phosphorylation. Binds to G- and F-actin. Increases filament turnover 20-30x
asm	Idin	Fimbrin: α -actinin-like domains. Can bundle actin filaments.
	g prot	Vimentin: found in intermediate filaments. Maintains myofibril alignment in striated muscle
	eins	Vinculin: actin cross-linking and bundling
	in the	Ezrin, Radixin, Moesin (ERM): regulation by phosphoinositide lipids (membrane components). Active in unfolded tail conformation.
		Cellular poisons active at low concentrations: used as research tools
	Þ	Cytochalasin: from aspergillus clavatus fungus, inhibit polymerisation/depolymerisation
	rtin	Latrunculin: from sea sponge: inhibits polymerisation
	hinding	Phalloidin: toxin from amanita fungus. Binds to and stabilises F- actin. Fluorescent derivative (eg rhodamine-phalloidin) used to stain F-actin in vitro.
	moleciiles	
		Imperial College London

Cell motility examples	Migration of phagocytic cells towards site of infection •Migration of cancerous cells away from site of primary tumour - invasion •Migration of cells during embryological development •Cytoplasmic streaming •Muscle contraction •Swimming: waving of cilia/flagellae; movement of liquids •Transport of organelles, Movement of vesicles •Phagocytosis	
	Microtubule-dependent motors:	
Cellular motors	kinesins dyneins nCd (nonclaret disjunctional – name of a drosophila gene) Actin-dependent motors: myosins Polymerisation engines: microtubules, actin (eg listeria) Treadmilling: when filaments shorten at one end and grow at the other. Rotary motors: flagellar engine F1 ATPase	
	•Involves coordinated shape changes due to cytoskeleton (actin mainly)	
-	•Needs appropriate signalling to coordinate parts of cell and control direction	
łow	•May depend on extracellular signals and receptor pathways	
do cel	•Cells become polarised - line up with a thin actin-containing extension (lamellipodium) forming the leading edge	
ls move?	 Microtubule system also is aligned - MTOC (microtubule organising centre) is forward of the nucleus, as is the Golgi 	
	Imperial College London	

