	CANCER 7

DNA DAMAGE AND REPAIR
Professor Nigel Gooderham


Learning objectives
1. Describe how DNA can be damaged by radiation or chemicals (carcinogens) and the role metabolism can play in these reactions.
1. Outline in general terms the role of p53 in the detection of, and response to, DNA damage. 
1. Summarise the natural repair mechanisms for damaged DNA.
1. Explain how unrepaired or misrepaired DNA damage can become “fixed” as a mutation.
1. Summarise how the potential of a chemical/agent to damage DNA can be assessed.
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Mammalian metabolism



Phase I



addition of functional groups

– e.g. oxidations, reductions, hydrolysis



mainly cytochrome p450-mediated



Phase II



conjugation of Phase I functional groups

– e.g. sulphation, glucuronidation, acetylation, 

methylation, amino acid and glutathione conjugation



Generates polar (water soluble) metabolites.
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Can also have substituents e.g methyl groups plus N or S in the multiple rings

Common combustion products

Bay regions and fjord regions - possible indicators of potential carcinogenicity?

DB[a,h]A first synthesised and used by Kennaway
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Two step epoxidation of B[a]P
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Common on poorly stored grains and peanuts

Aflatoxin B1 is a potent human liver carcinogen, especially in Africa and Far-East
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Metabolism of 2-naphthylamine
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Metabolism of 2-naphthylamine
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Other carcinogens



Pyrimidine (thymine) 

dimers
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Skin cancer
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Brain tumours for cosmic radiation - flight crew epidemiology?



image1.jpeg









Othercarcinogens.

Solar (V) radiation

- Pysmiding hymine)
imars

- Skncancer






image9.emf
Other carcinogens
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Oxygen free radical attack on DNA
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Role of p53 in dealing with cellular stress
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

Direct reversal of DNA damage
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Xeroderma pigmentosum proteins (XP proteins) assemble at the 
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>100 genes involved in repair mechanisms in mammalian cells (second 2 above shown)
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Estimated rates of endogenous damage and 

repair

The greater the persistence of damage then the greater the 

chance of a mutagenic event
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Estimated rates of endogenous damage and repair



The greater the persistence of damage then the greater the chance of a mutagenic event





In the normal situation it would appear that human cells have plenty of spare capacity to deal with both endogenous and exogenous damage but errors creep in especially with increasing age 

So if poorly repaired then more likely is the chance of carcinogenesis
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In vitro micronucleus assay
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Bone marrow micronucleus assay in 

mice or rats

Mn PCE

Treat animals with chemical and examine bone marrow cells 

or peripheral blood erythrocytes for micronuclei
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Summary



Chemicals and radiation can damage DNA.



Chemicals often require metabolic activation (e.g. by 

cytochrome P450) before they are able to damage DNA.



Radiation induces pyrimidine dimers, strand breaks, 

abasic sites and modified bases in DNA.



Damaged DNA can be repaired by direct reversal or 

excision of damaged bases or nucleotides.



Incorrect repair can lead to mutation and possibly 

neoplasia.



Detecting the ability of agents (chemicals and radiation) 

to damage DNA is essential
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Cancer Research.
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